
MODELING AND STOCHASTIC ANALYSIS OF

EMBEDDED SYSTEMS EMPHASIZING COINCIDENT

FAILURES, FAILURE SEVERITY AND USAGE-PROFILES

By

KSHAMTA JERATH

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE
(COMPUTER SCIENCE)

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

AUGUST 2002

ii

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesis of

KSHAMTA JERATH find it satisfactory and recommend that it be accepted.

Chair

iii

ACKNOWLEDGEMENT

I am grateful to Dr. Frederick T. Sheldon, my major advisor, who channeled my

research in the right direction and from whom I received precious pointers throughout my

master’s program. I am very thankful to his dedicated teaching and enthusiasm for work

in this field.

Special thanks to Juergen S. Schwarz, the Technical Lead for Research Information

and Communication System Safety at DaimlerChrysler, who provided invaluable

feedback regarding the analysis of results and the discussion about modeling strategy. I

am also thankful to my committee members, Dr. Zhe Dang and Dr. Curtis Dyreson for

their insightful comments on my work.

I wish to thank all the members of the Software Engineering for Dependable Systems

(SEDS) Lab, including Hye Yeon Kim, Zhihe Zhou, Shuren Wang, David Dugan,

Yingxia Wang and Shuangshuang Jin for their help and support. I am also thankful to

Ms. Ruby Young who was always very helpful and patiently answered all my questions

concerning administrative procedures.

Finally, my sincere thanks to my parents and brother, who provided immeasurable

moral support and prodded me on to work diligently, from across the miles. I am

extremely thankful for their support that kept me going, and made this possible.

iv

MODELING AND STOCHASTIC ANALYSIS OF

EMBEDDED SYSTEMS EMPHASIZING COINCIDENT

FAILURES, FAILURE SEVERITY AND USAGE-PROFILES

ABSTRACT

by Kshamta Jerath, M.S.
Washington State University

August 2002

Chair: Frederick T. Sheldon

The increasingly ubiquitous use of software systems has created the need of being

able to depend on them more than before, and of being able to measure just how

dependable they are. Knowing that the system is reliable is absolutely necessary for

safety-critical systems, where any kind of failure may result in an unacceptable loss of

human life. This study models and analyzes the Anti-lock Braking System of a passenger

vehicle. Special emphasis is laid on modeling extra-functional characteristics of

coincident failures, severity of failures and usage-profiles - the goal is to develop an

approach that is realistic, generic and extensible for this application domain. Components

in a system generally interact with each other during operation, and a faulty component

can affect the probability of failure of other correlated components. The severity of a

failure is the impact it has on the operation of the system. This is closely related to the

notion of hazard which defines what undesirable consequence will potentially result from

the incorrect system operation (i.e., threat). Usage profile characterizes how the system is

used for the purpose of modeling and reliability analysis. Only those failures that occur

v

during active use are considered in reliability calculations. The strategy of modeling these

characteristics (using empirical data) is innovative in terms of the approach used to

integrate them into the Stochastic Petri Net and Stochastic Activity Network formalisms.

The validation approach compares the results from the two separate models using the two

different modeling formalisms. The results were found to be comparable and confirm that

the effect of modeling coincident failures, failure severity and usage-profiles is noticeable

in determining overall system reliability. The contribution of this research to the

automotive industry is substantial as it offers a greater insight into the strategy for

developing realistic models. This work also provides a solid basis for modeling more

complex systems and carrying out further analyses.

vi

LIST OF PUBLICATIONS

Kshamta Jerath and Frederick T. Sheldon. “Reliability Analysis of an Anti-lock Braking

System using Stochastic Petri Nets.” Fifth International Workshop on Performability

Modeling of Computer and Communication Systems (PMCCS’5), Erlangen, Germany.

September, 2001.

Frederick T. Sheldon, Kshamta Jerath and Stefan Greiner. “Examining Coincident

Failures and Usage Profiles in Reliability Analysis of an Embedded Vehicle Sub-

System.” 16th European Simulation Multiconference (ESM’02), Darmstadt, Germany.

June 3-5, 2002.

Frederick T. Sheldon and Kshamta Jerath. “Predicting Reliability of an Embedded

Vehicle System by modeling Coincident Failures and Usage-Profiles.” 13th International

Symposium on Software Reliability Engineering (ISSRE’02), Annapolis, MD, November

12-15, 2002. (Submitted)

Kshamta Jerath and Frederick T. Sheldon. “Stochastic Modeling and Analysis of an

Embedded Vehicle Sub-system with Emphasis on Coincident Failures, Failure Severity

and Usage-Profiles.” IEEE Transactions on Reliability. (In preparation for submission).

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENT... III

ABSTRACT ...IV

LIST OF PUBLICATIONS..VI

TABLE OF CONTENTS.. VII

LIST OF TABLES .. XII

LIST OF FIGURES .. XIII

CHAPTER ONE.. 1

INTRODUCTION... 1

1.1 PROBLEM DEFINITION .. 1

1.2 MOTIVATION.. 1

1.2.1 Need for a Realistic and Extensible Model ... 2

1.2.2 Importance of Modeling Coincident Failures and Severity of Failures 3

1.2.3 Importance of Modeling Usage-Profiles... 4

1.2.4 Comparing Results from two Stochastic Formalisms 4

1.3 ORGANIZATION .. 5

CHAPTER TWO... 6

RELATED RESEARCH .. 6

2.1 INTRODUCTION TO MODELING AND ANALYSIS .. 6

2.1.1 Defining Important Terms... 6

viii

2.1.2 Evaluation Methodology ... 7

2.1.3 Modeling and Analysis Techniques... 8

2.2 STOCHASTIC PROCESSES AND MODELS .. 10

2.2.1 Markov Process... 10

2.2.2 Applicability of Markov Chains .. 10

2.2.3 Performability and Markov Reward Models... 11

2.2.4 Challenges in Modeling .. 12

2.3 STOCHASTIC MODELING TECHNIQUES AND TOOLS .. 13

2.3.1 Stochastic Petri Nets ... 14

2.3.2 Stochastic Activity Networks ... 17

2.4 RELATED WORK ON SEVERITY AND COINCIDENT FAILURES 21

2.4.1 Severity of Failures ... 21

2.4.2 Coincident Failures... 22

2.5 RELATED WORK ON USAGE-PROFILES... 25

2.5.1 Usage-Profiles and Performability ... 25

2.5.2 Modeling Usage-Profiles or Workload... 26

CHAPTER THREE .. 30

AN EXAMPLE EMBEDDED SYSTEM .. 30

3.1 BASIC OVERVIEW... 30

3.2 THE ANTI-LOCK BRAKING SYSTEM DESCRIPTION.. 31

3.2.1 Components of the ABS... 31

3.2.2 Functioning of the ABS ... 33

3.2.3 Component Failure Rates.. 34

ix

3.3 SYSTEM ASSUMPTIONS .. 35

3.3.1 Modes of Operation... 35

3.3.2 Lifetime of a Passenger Vehicle .. 35

3.3.3 Inter-relationships between Components.. 36

CHAPTER FOUR... 37

STOCHASTIC MODELING FORMALISMS .. 37

4.1 STOCHASTIC PETRI NET MODELS... 37

4.1.1 Modeling Coincident Failures and Severity.. 37

4.1.2 Modeling Usage-profiles... 44

4.1.3 Specifying Reliability Measures and Halting Condition........................... 47

4.1.4 Extensibility of the SPN Model.. 49

4.2 STOCHASTIC ACTIVITY NETWORK MODELS ... 50

4.2.1 Modeling Coincident Failures and Severity.. 50

4.2.2 Modeling Usage-profiles... 56

4.2.3 Specifying Reliability Measures and Halting Condition........................... 58

4.2.4 Extensibility of the SAN Model.. 59

4.3 COMPARING THE SPN AND THE SAN MODELS.. 61

4.3.1 Modeling conflicts: Temporal uncertainty vs. Spatial uncertainty 61

4.3.2 Specifying the Halting Condition .. 62

4.3.3 Composed Model Specification... 64

4.3.4 Definition of Reliability Reward Rates.. 64

4.3.5 Compactness and Clarity .. 64

CHAPTER FIVE... 66

x

RESULTS AND DISCUSSION.. 66

5.1 RELIABILITY ANALYSIS OF SPN MODELS... 66

5.1.1 Transient Analysis using SPNP... 66

5.1.2 Results for Models Representing Coincident Failures and Severity of

Failure... 67

5.1.3 Results for Models Representing Usage-Profiles...................................... 70

5.2 RELIABILITY ANALYSIS OF SAN MODELS.. 72

5.2.1 Transient Analysis using UltraSAN .. 72

5.2.2 Results for Models Representing Coincident Failures and Severity of

Failure... 73

5.2.3 Results for Models Representing Usage-Profiles...................................... 74

5.3 COMPARISON OF RESULTS FROM ANALYSIS USING THE TWO DIFFERENT

STOCHASTIC TOOLS ... 76

5.3.1 Comparing Results for Models Representing Severity and Coincident

Failures ... 77

5.3.2 Comparing Results for Models Representing Usage-Profiles 78

5.3.3 Comparing Results to Compensate for Lack of Validation....................... 78

CHAPTER SIX.. 81

CONCLUSIONS ... 81

6.1 SUMMARY .. 81

6.2 CONCLUSION.. 81

6.3 FUTURE WORK... 83

6.3.1 Sensitivity analysis .. 84

xi

6.3.2 Model the Entire System.. 84

6.3.3 Discrete Event Simulation... 85

6.3.4 Validation of Results ... 86

BIBLIOGRAPHY ... 88

APPENDIX A .. 96

STOCHASTIC PETRI NET MODELS FOR ABS.. 96

A.1 MODELING SEVERITY OF FAILURE AND COINCIDENT FAILURES 97

APPENDIX B... 111

STOCHASTIC ACTIVITY NETWORK MODELS FOR ABS............................... 111

B.1 MODELING SEVERITY AND COINCIDENT FAILURES .. 112

APPENDIX C .. 117

KEY TO SYMBOLS USED IN SPN AND SAN... 117

C.1 SYMBOLS USED IN STOCHASTIC PETRI NETS .. 118

C.2 SYMBOLS USED IN STOCHASTIC ACTIVITY NETWORKS 118

APPENDIX D .. 119

RISK AND SAFETY INTEGRITY LEVELS.. 119

D.1 RISK AND SAFETY INTEGRITY ... 120

D.2 SAFETY INTEGRITY LEVELS .. 121

xii

LIST OF TABLES

TABLE 1: COMPONENT FAILURE RATES ASSOCIATED WITH CRITICAL FAILURE STATES 34

TABLE 2: PROBABILITY OF FAILURES OF DIFFERENT SEVERITY .. 42

xiii

LIST OF FIGURES

FIGURE 1: OVERVIEW OF PERFORMANCE EVALUATION METHODOLOGY …………………..7

FIGURE 2: STEPS IN PERFORMABILITY MODEL SPECIFICATION …………………………..11

FIGURE 3: EXAMPLE SPN MODEL ……………………………………………………….15

FIGURE 4: EXAMPLE SAN MODEL ……… ………………………………………………19

FIGURE 5: ORGANIZATION AND DATA FLOW IN ULTRASAN ...…………………………20

FIGURE 6: TOP-LEVEL STATE TRANSITION DIAGRAM ……………………………………30

FIGURE 7: LOGICAL VIEW OF SYSTEM OPERATION ……………………………………….31

FIGURE 8: TOP-LEVEL SCHEMATIC SHOWIING SENSORS, PROCESSING AND ACTUATORS ..32

FIGURE 9: CONTROL FLOW IN ABS FUNCTIONING ……… ………………………………33

FIGURE 10: INTER-DEPENDENCIES BETWEEN COMPONENTS ……… ……………………..36

FIGURE 11: THE SPN MODEL FOR ABS ..…………………………………………...…...40

FIGURE 12: THE SPN MODEL WITH COINCIDENT FAILURES AND SEVERITY …………….41

FIGURE 13: RULE FOR CALCULATING FAILURE RATES ..………………………….……...43

FIGURE 14: VARIABLE RATE TO MODEL COINCIDENT FAILURES ...………………………43

FIGURE 15: SPN MODEL WITH USAGE-PARAMETERS …….……………………………...46

FIGURE 16: STATE DIAGRAM FOR RELIABILITY EVALUATION …………………………...46

FIGURE 17: VARIABLE RATE TO MODEL USAGE PARAMETER ……………………………47

FIGURE 18: FUNCTION TO CALCULATE RELIABILITY REWARD …………………………..48

FIGURE 19: FUNCTION TO EVALUATE FOR HALTING CONDITION …...……………………48

FIGURE 20: THE ABS COMPOSED SAN MODEL …………………………………………52

FIGURE 21: CENTRAL_2 SUBNET WITH THE CONTROLLER COMPONENT HIGHLIGHTED ….53

xiv

FIGURE 22: ACTIVITY RATES MODEL SEVERITY AND COINCIDENT FAILURES ...…….…...54

FIGURE 23: CONSTRUCT TO MODEL COINCIDENT FAILURES ……………………………..55

FIGURE 24: CONSTRUCT TO MODEL USAGE-PROFILES …………………………………..57

FIGURE 25: REWARD RATE TO CALCULATE RELIABILITY ………………………………..58

FIGURE 26: MODELING UNCERTAINTY – SPN MODEL OF CONTROLLER ………………...61

FIGURE 27: MODELING UNCERTAINTY – SAN MODEL OF CONTROLLER ………………..62

FIGURE 28: CONSTRUCT TO DETERMINE HALTING CONDITION IN SAN MODEL ………...63

FIGURE 29: SPN RELIABILITY RESULTS FOR SEVERITY AND COINCIDENT FAILURES .…..68

FIGURE 30: DIFFERENCE IN RELIABILITY FUNCTIONS ………..…………………………..69

FIGURE 31: SPN RELIABILITY RESULTS FOR USAGE PROFILES …………….……………70

FIGURE 32: SAN RELIABILITY RESULTS FOR SEVERITY AND COINCIDENT FAILURES …...73

FIGURE 33: SAN RELIABILITY RESULTS FOR USAGE PROFILES …………….……………75

FIGURE 34: MODEL FAITHFULNESS VS. SIMPLICITY ……………………...………………76

FIGURE 35: COMPARISON OF SPN AND SAN RESULTS FOR THE MODELS REPRESENTING

SEVERITY AND COINCIDENT FAILURES …………………….………………...77

FIGURE 36: COMPARISON OF SPN AND SAN RESULTS FOR THE MODELS REPRESENTING

USAGE-PROFILES …………………….…………………...………………….79

FIGURE 37: MODELING THE ENTIRE SYSTEM ………………………...….……………….85

1

CHAPTER ONE

INTRODUCTION

And here Alice began to get rather sleepy, and went on saying to herself,
in a dreamy sort of way, `Do cats eat bats? Do cats eat bats?' and
sometimes, `Do bats eat cats?' for, you see, as she couldn't answer either
question, it didn't much matter which way she put it.

- Alice in Wonderland

1.1 Problem Definition

This study models and analyzes the Anti-lock Braking system of a passenger vehicle

using two different stochastic formalisms - Stochastic Petri Nets (SPN) and Stochastic

Activity Networks (SAN). Special emphasis is laid on modeling extra-functional

characteristics of coincident failures, severity of failures and usage-profiles. The goal is

to develop a realistic and extensible model of the system (useful as a framework for

future analysis), to carry out its reliability analysis using the two different formalisms and

to compare the results. The modeling approach must overcome the two most common

challenges in modeling using Markov models – large state space and stiffness. Further,

the strengths and weaknesses of each of the two tools used (Stochastic Petri Net Package

for solving SPN models and UltraSAN for solving SAN models) need to be examined so

that they can be used to achieve robust models and accurate analysis results.

1.2 Motivation

The increasingly ubiquitous use of software systems has created the need of being

able to depend on them more than before; and being able to measure just how dependable

they are. Knowing that the system is reliable is absolutely necessary for safety-critical

systems, where any kind of failure may result in an unacceptable loss of human life.

2

Reliability is the probability that a system will deliver its intended functionality and

quality for a specified period of “time” and under specific conditions, given that the

system was functioning properly at the start of this “time” period [1]. Structured models

of reliability allow the reliability of a system to be derived from the reliabilities of its

components.

A complex embedded vehicle system (like the Anti-lock Braking System) is

composed of numerous components and the probability that the system survives (efficient

or acceptable degraded performance) depends directly on each of the constituent

components. The reliability analysis of a vehicle system can provide an understanding

about the likelihood of failures occurring in the system and an increased insight to

manufacturers about inherent “weaknesses” in the system [2].

1.2.1 Need for a Realistic and Extensible Model

In [3], the authors presented Stochastic Petri Net (SPN) models of a vehicle dynamic

driving regulation (DDR) system. Sub-system representations of the Anti-lock Braking

System (ABS), the Electronic Steering Assistance (ESA), the Automatic Slip Reduction

(ASR) and a combined model were developed and analyzed for critical failures. The main

theoretical idea stated for future work was the decomposition of the stochastic problem

into a finite number of manageable scenario sub-problems and the coordination of their

solutions by specially designed algorithms. They asserted that there is a great deal of

disconnectedness among the steps needed to (1) understand the problem, (2) break it into

manageable sub-problems, (3) develop models that are realistic in terms of the sub-

problems they represent and, (4) combining them into the larger more complex context.

3

In this study, I have focused on modeling and analyzing the Anti-lock Braking

System. Naturally, this is but one component of the total system and there is an implicit

requirement that the developed model be easily extensible and fit into a larger complex

context. Further, the model needs to be realistic enough to take into consideration certain

extra-functional relationships among components of the system, as discussed in the next

two sub sections.

1.2.2 Importance of Modeling Coincident Failures and Severity of Failures

If a system does not contain any redundancy – that is, if every component must

function properly for the system to work - and if component failures are statistically

independent, then the system reliability is simply the product of the component

reliabilities. Furthermore, the failure rate of the system is simply the sum of the failure

rates of the individual components [4]. The assumption that failures occur independently

(in a statistical sense) in hardware components is a widely used and often successful

model for predicting the reliability of hardware devices. However, components generally

interact with each other during operation, and a faulty component can affect the

probability of failure of other components too [5]. Such failures are coincident in the

sense that failure of one component increases the probability of failure of another. Thus,

for the model to be realistic, it is important to consider coincident failures.

Another aspect of modeling failures occurring in the system is their severity. Severity

of a failure is the impact it has on the operation of the system. It is closely related to the

threat (hazard) the problem poses, in functional terms, to the correct operation of the

system [1]. Predicting the reliability/availability based on the characteristics of a model

of the system provides more objective and concrete information that can be used in

4

assessing the risk tradeoffs and integrity levels. Severity is an important candidate to

weight the data used in reliability calculations and must be incorporated into the model to

determine the probability that the system survives, including efficient or acceptable

degraded operation.

1.2.3 Importance of Modeling Usage-Profiles

A software-based product’s reliability depends on just how a customer will use it. The

operational profile – quantitative characterization of how a system will be used – is

essential in software reliability engineering [6]. The same basic concept can be extended

and applied for predicting system reliability. We extend the idea of operational profiles –

considering the use of a software system during testing; into usage profiles – the usage of

the system (hardware and software) for modeling and reliability analysis.

The reliability of a system depends on its usage profile - users interact with the

system in an intermittent fashion, resulting in operational workload profiles that alternate

between periods of “active” and “passive” use. Reliability is concerned with the service

that is actually delivered by the system as opposed to a system’s capacity to deliver such

service [7]. Intermittent use influences the mean time to failure and reliability of the

system. Specifically, while considering usage profiles, faults need not necessarily cause

failures since they can be repaired; failures occurring during “active” use of the system

only should contribute to reliability calculations.

1.2.4 Comparing Results from two Stochastic Formalisms

Markov Models are a basic and powerful tool for modeling systems composed of

several processes (such as a failure process and a repair process). They are a tool for both

reliability and availability modeling. However, when using a model, there is always the

5

question of whether it accurately reflects the important facets of the system for the

purpose of the decisions to be made. Since the model is just an abstraction of the real

world problem, predictions based on the model should be validated against actual

measurements. A poor validation (lack of correlation between what is predicted and what

is empirically observed) may suggest modifications to the original model [8].

Since validation by comparison against actual measurements is beyond the scope of

this research (see Section 5.3 for further discussion), the objective was to compare the

results obtained by modeling the same sub-system using two different stochastic

formalisms: Stochastic Petri Nets (SPNs) and Stochastic Activity Networks (SANs).

SPNs are a powerful tool for the description and the analysis of systems that exhibit

concurrency, synchronization and conflicts [9]. SANs are a generalization of SPNs that

permit a more expressive, general and flexible representation of concurrency, timeliness,

fault tolerance, and degradable performance in a single model [10].

1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 provides a survey of related

work. Chapter 3 introduces an embedded system – the Anti-lock Braking System which

is used as a representative example to explain the modeling strategy. Chapter 4

enumerates the modeling philosophy using both SPNs and SANs for representing

severity of failure, coincident failures and usage-profiles. Chapter 5 presents the results

and a discussion of the analyses. Chapter 6 concludes with a brief summary and direction

for future research. There are two brief appendices that provide some code listings and

models developed, an appendix that lists the various symbols used in SPNs and SANs

and an appendix that provides a discussion on failure severity levels.

6

CHAPTER TWO

RELATED RESEARCH

It sounded an excellent plan, no doubt, and very neatly and simply
arranged; the only difficulty was, that she had not the smallest idea how to
set about it.

- Alice in Wonderland

2.1 Introduction to Modeling and Analysis

Systems consist of hardware and software, and it is common to fully design,

implement and functionally test them before an attempt is made to determine their

performance characteristics. At the same time, the redesign of both hardware and

software is costly and may cause late system delivery [11]. Complexity in such systems is

one of, if not the most important properties that make the design and the implementation

of high assurance systems so difficult. Furthermore, as the complexity of future systems

increases, the more important it becomes to evaluate and predict their behavior. To better

understand the complexity, it is common practice to create a model [12]. A model is a

representation of the system and is studied as a surrogate for the actual system [13].

A model is an abstraction of a system that includes sufficient detail to facilitate an

understanding of system behavior. To be useful, the model should reflect important

system characteristics such as fault tolerance, automatic reconfiguration and repair,

contention for resources, concurrency and synchronization, deadlines imposed on tasks,

and graceful degradation [14].

2.1.1 Defining Important Terms

To optimize and enhance systems, various forms of evaluation are carried out on

7

models and as these systems become more complex, evaluation of these models do the

same. The two most basic aspects of evaluation are: performance and dependability.

Performance is defined as “quality of service, provided the system is correct.”

Dependability is “the property of a system which allows reliance to be justifiably placed

on the service it delivers” [15]. Dependability encompasses failure, reconfiguration and

repair related aspects of system behavior. Reliability, availability, safety and related

measures are collectively known as dependability.

Reliability is the probability that a system, or a system component, will deliver its

intended functionality and quality for a specified period of time, and under specified

conditions, given that the system was functioning properly at the start of this time period.

Availability is the probability that a system, or a system component, will be available to

start a mission at a specified time [1].

2.1.2 Evaluation

Methodology

To assure an

appropriate performance,

today’s evaluation

methodology includes the

following steps as shown in

Figure 1 (Figure 3 in [11]

reproduced with permission

of the publisher). Workload

characterization and system parameter specification are the first sensitive steps.

Problem Identification and
Requirements Analysis

Characterization (Workload/
System Paramters)

Experiments
(Monitoring of real systems)

Modeling
(Workload/System Behavior)

Analysis of Measured Values
Analysis by Mathematical

Methods or Simulation

Validation Validation

Synthesis of Optimized
Structures

Sensitivity Analysis

© Springer-Verlag Berlin Heidelberg 2001

Figure 1: Overview of Performance Evaluation Methodology

8

Determining these values requires care and knowledge about both the application and the

technical system components. Next, the design methodology distinguishes between two

totally different but complementary approaches: experiments on the real system

(measurements) and modeling. Both are followed by analysis steps using methods of

statistics, stochastic processes and simulation. The validation of experimental and

modeling results follows next and is very important. Finally, system structures and

operating modes are synthesized; systematic parameter variation and mathematical

optimization techniques guarantee good system design.

2.1.3 Modeling and Analysis Techniques

Due to the recent development in model generation and solution techniques, and the

availability of software tools, large and realistic models can be developed and studied. A

system designer has a wide range of different types of models to choose from. Each type

has its strengths and weaknesses in terms of accessibility, ease of construction, efficiency

and accuracy of solution algorithms, and availability of software tools. The most

appropriate type of model depends upon the complexity of the system, the questions to be

studied, the accuracy required, and the resources available for study [14].

For example, combinatorial models such as fault-trees and reliability block diagrams

are efficient in both specification and evaluation of systems models. But it is difficult, if

not impossible, to allow for various types of dependency (such as repair dependency and

near-coincident-fault type dependency), transient and intermittent faults, and so forth.

Markov models can capture such interesting system behavior. The model, thus, can be

developed using a formalism appropriate for the system under study.

9

Once a mathematical model has been built, it must then be examined to see how it

can be used to answer the questions of interest about the system it is supposed to

represent. There are two basic methods used to solve the system model: mathematical and

system simulation [12]. While mathematical solution methods allow one to obtain exact

information on questions of interest, simulation evaluates a model numerically in order to

estimate the desired true characteristics of the system [13]. The mathematical solution

method may be further classified into analytical (non-state-space based) and numerical

(state-space based). The mathematical method works by solving a system (or set) of

linear or differential equations while a simulation is differentiated into discrete event

simulation and continuous simulation.

2.1.3.1 Analytical Solution Methods

Reliability block diagrams, fault trees and reliability graphs are non-state-space

methods commonly used to study dependability of systems. They are concise, easy to

understand and have efficient solution methods. However, realistic features such as non-

independent behavior of components, imperfect coverage, non-zero reconfiguration

delays, and combination with performance cannot be captured by these models [14].

2.1.3.2 Numerical Solution Methods

State-space based models enable us to overcome the limitations of the non-state-space

models in modeling complicated interactions between measures of interest. Most

commonly used state space models are Markov chains. They provide great flexibility for

modeling dependability, performance and combined dependability and performance

measures [14].

10

2.2 Stochastic Processes and Models

A family of random variables1 that is indexed by a parameter such as time is known

as a stochastic process. A stochastic process {X(t) | t ∈ T} is defined over a given

probability space and is indexed by the parameter t (time), where t varies over an index

set T. The values assumed by the random variable X(t) are called states, and the set of all

possible values forms the state space of the process [8].

2.2.1 Markov Process

A Markov Process is a stochastic process whose dynamic behavior is such that

probability distributions for its future development depend only on the present state and

not on how the process arrived in that state (the so called memory-less property). If we

assume that the state space is discrete (finite or countably infinite), then the Markov

process is known as a Markov chain. If we further assume that the parameter space, T, is

also discrete, then we have a discrete-parameter Markov chain; otherwise a continuous-

parameter Markov chain [8].

2.2.2 Applicability of Markov Chains

These days, Markov chains and stochastic processes form the basis for model-based

system evaluations in many areas of science and engineering. They find applicability, for

instance, in biology to model growth and decay of populations, in physics to model

interactions between elementary particles, in chemical engineering to model (chain)

reactions between molecules or to model mixing processes, in management sciences to

model the flow of commodities in logistic or flexible manufacturing systems or to model

the availability of production lines and, most notably, in computer and communication

1 A random variable is a rule that assigns a numerical value to each possible outcome of an experiment.

11

science and engineering to model system performance and dependability in a wide

variety of settings [16].

2.2.3 Performability and Markov Reward Models

Performability is a fabricated word that combines the two terms: performance and

reliability. The performability discipline tries to merge these two modeling paradigms.

The systems under consideration are so-called degradable systems, meaning the system

may be able to survive the failure of one or more system components. Once a system

component fails, the system may continue to operate with a reduced performance. In such

cases, it is necessary to consider both performance and reliability together [12, 17].

2.2.3.1 Performability Model Specification

A specification of a performability model can be regarded as having three major

ingredients [18] shown in Figure 2.

S1. Specification of what is to be learned

about the object system from its (model-based)

evaluation, i.e., the performability measures of

interest.

S2. Specification of a stochastic process on

which the evaluation is to be based (a base

model of the total system).

S3. Specification of how S2 relates to S1 in

a manner that permits the base model (after

construction) to support solution of the

Specification of
Performability measures
eg. throughput, response

time, time to failure.

Specification of Base
Model as a discrete state
stochastic process with a

continuous time-base.

Mapping states in S2 to
values of the

performability measures in
S1, permitting solutions at

base model level to
determine desired

measures.

S1

S2

S3

Figure 2: Steps in Performability Model
Specification

12

specified measures.

Moreover, given that the recipient of the above is a model-based evaluation tool,

languages used to express S1-S3 must be sufficiently formal to permit their unambiguous

interpretation and subsequent automated realization by the tool. Naturally, the results

obtained after analysis may instigate subsequent enhancements to the model, requiring

the steps S1-S3 to be repeated for a more robust model.

2.2.3.2 Markov Reward Models

The most common solution method for performability is based on reward models.

This model associates reward rates with state occupancies. The reward rate can be

thought of as the work accomplished in that specific state. By combining the model of a

stochastic process for a given system with the reward rates for that system, a reward

model results. The total reward accumulated over a given time period is the performance

of the system. Performability then results by combining this performance with a Markov

process representing the dependability of the system [15]. Markov reward models are the

most common technique for modeling degradable systems.

Markov Reward Models (MRM) have the potential to reflect concurrency, contention,

fault-tolerance, and degradable performance; they can be used to obtain not only system

performance and system reliability/availability measures, but also combined measures of

performance and reliability/availability [19].

2.2.4 Challenges in Modeling

Structured models of reliability allow the reliability of a system to be derived from

the reliabilities of its components. The reliabilities of individual components are often

easier to estimate or are known before the system is even built. Markov Models have

13

been used successfully in numerous instances to specify and evaluate the

performance/reliability of systems. However, practical issues that stand in the way of

developing such models include: (1) obtaining reliability data of components, (2) a

simple model being able to capture only limited interactions among components, (3) the

need to estimate fault correlation between components, and (4) reliability depends on

how the system is used, thereby usage information being an important part of reliability

evaluation [20].

Further, two distinct problems that arise while using Markov processes are largeness

and stiffness [14]. The size of a Markov Model for the evaluation of a system grows

exponentially with the number of components in the system. If there are n components,

the Markov Model may have up to 2n states. This causes the analysis to take a great deal

of time. Stiffness is due to the different orders of magnitude (sometimes 106 times)

between the rates of occurrence of performance-related events and the rates of rare,

failure-related events. Stiffness leads to difficulty in the solution of the model and

numerical instability. Any attempt at modeling using Markov models must address these

two problems. These challenges have been overcome in the current study as described in

Sections 4.1.1.2, 4.1.2.2, 4.2.1.2 and 4.2.2.2.

2.3 Stochastic Modeling Techniques and Tools

As discussed above, state-space based models such as Markov models are capable of

capturing the various kinds of dependencies that affect the prediction of reliability/

availability for a given system or proposed system. The sizes of these Markov models

tend to be very large for complex systems and hence are difficult to specify and manage.

A number of techniques exist that can be used to generate the (large) underlying Markov

14

chains automatically from a concise description of the system. Two of them – Stochastic

Petri Nets and Stochastic Activity Networks, are discussed here.

2.3.1 Stochastic Petri Nets

Petri Nets (PNs) are abstract formal models that have been developed in search for

natural, simple and powerful methods for describing and analyzing the flow of

information and control in systems [9]. They are a graphical and mathematical tool for

describing and studying information processing systems that are characterized as being

concurrent, asynchronous, distributed, parallel, non-deterministic and/or stochastic [21].

2.3.1.1 Basic Overview

A PN is a bipartite directed graph whose nodes are divided into two disjoint sets

places and transitions [19]. Places (drawn as circles) represent conditions, and transitions

(drawn as bars) represent events. A marked Petri net is obtained by associating tokens

with places. Tokens (drawn as small filled circles) are moved from place to place when

the transitions fire, and are used to denote the conditions holding at any given time. As an

event is usually enabled by a combination of conditions, a transition is enabled by a

combination of tokens in places. An arc is drawn from a place to a transition (input arc)

or from a transition to a place (output arc). Arcs are used to signify which combination of

conditions must hold for the event to occur and which combination of conditions holds

after the event occurs. A cardinality may be associated with these arcs. A transition is

enabled if each input place contains at least one token (or at least equal to the cardinality

of the input arc from that place); an enabled transition fires by removing a token from

each input place and depositing a token in each output place [22].

15

The Stochastic Petri Net (SPN) model is obtained from the Petri net model by

associating a probability distribution function to the firing time of each transition.

Transitions with an associated exponential distribution function are said to be timed;

transitions with zero time distribution are said to be immediate [23]. An SPN can be

analyzed by considering all possible markings (enumerations of the tokens in each place)

and solving the resulting reachability graph as a Markov chain. The symbols used to

represent the various components of an SPN are present in Appendix C.1.

2.3.1.2 An Example SPN Model

Consider the well-known example of a producer-consumer system with two

processes, one that produces

data and places it into the

(infinite) queue and the second

that reads the data from the

queue and consumes it. Figure

3 shows the SPN model of this

system. Places process_1 and

process_2 model the state

when either process is ready to write and read from the queue respectively (denoted by

the presence of a token in those places). Transitions write and read perform the function

of actually writing data and reading data from the queue respectively. The temporal

characterization of these two transitions is based on assumptions about the duration of

such operations; the choice of immediate transitions here amounts to neglecting the

delays inherent in such operations. The queue is denoted by the place queue. The number

write read

queue

process_1 process_2

produce consume

producer consumer

Figure 3: Example SPN Model

16

of tokens in this place indicates the number of data values available for reading. When

there is no token in this place, the transition read is not enabled and hence nothing can be

read from the queue. Places producer and consumer indicate the state when the processes

are ready to produce the data and process the data read respectively. Transitions produce

and consume perform the function of actually producing and consuming the data. The

temporal characterization of these two transitions is again derived by assumptions about

the duration of such processing.

2.3.1.3 Stochastic Petri Net Package

A number of software packages exist that enable the performability and reliability

analysis of SPNs. The Stochastic Petri Net Package2 (SPNP) has been developed by

Ciardo et al. at Duke University [23, 24].

The model type used for input is a stochastic reward net (SRN). SRNs incorporate

several structural extensions to SPNs such as marking dependencies (marking dependent

arc cardinalities, enabling functions etc.) and allow reward rates to be associated with

each marking. The reward function can be marking dependent as well. There is no

interactive interface, but a graphical interface exists [25].

SRNs are specified using CSPL (C based Stochastic Petri Net Language) which is an

extension of C with additional constructs for describing the SPN models. SRN

specifications are automatically converted into an MRM, which is then solved to compute

a variety of transient, steady state, cumulative, and sensitivity measures.

Thus, SPNP allows the specification of Stochastic Reward Models, the computation

of steady state, transient, cumulative, time-averaged and “up-to-absorption” measures and

2 SPNP is written in C and runs on a variety of operating systems including UNIX, AIX, OS/2 and VMS.

17

sensitivities of these measures. Efficient and numerically stable algorithms employing

sparse matrix techniques are used to solve the underlying Markov chain. Parametric

sensitivity analysis of Stochastic Petri Net models is also implemented.

2.3.2 Stochastic Activity Networks

Stochastic Petri Nets (SPNs) are limited in their expressive power, and these limited

operations make it very difficult to model complex interactions. More general and

flexible formalisms are needed to represent real systems. The need for a more expressive

modeling language has led to several extensions to SPNs. Stochastic Activity Networks

(SANs) are one such extension, defined with the express purpose of facilitating unified

performance/dependability (performability) evaluation as well as more traditional

performance and dependability evaluation [26].

Specifically, SANs permit both the representation of complex interactions among

concurrent activities (as can be represented in SPNs) and non-determinism in actions

taken at the completion of some activity (this type of uncertainty does not have a natural

representation in SPNs). SPNs exhibit non-deterministic behavior as the consequence of

temporal uncertainty i.e., among a set of enabled transitions, there is uncertainty as to

which transition will fire. When modeling the structure and behavior of complex systems,

one wants to represent spatial uncertainty as well as temporal uncertainty e.g., on the

completion of an activity, the uncertainty about the next state of the system. SANs permit

the representation of both temporal and spatial uncertainty in a natural, well-defined

manner [27], using output cases associated with each activity. On the other hand, the only

way of representing such uncertainty in SPNs is to model it as a conflict among

immediate transitions.

18

2.3.2.1 Basic Overview

SANs, a generalization of SPNs, permit the representation of concurrency, fault

tolerance, and degradable performance in a single model [10]. Using graphical primitives,

SANs are more compact and provide greater insight into the behavior of the network.

Structurally, SANs consist of four primitive objects: places, activities, input gates and

output gates [28, 29]. Places represent the state of the modeled system. They are

represented graphically as circles. Each place contains a certain number of tokens, which

represents the marking of the place. The set of all place markings represents the marking

of the network. Activities represent actions in the modeled system that take some

specified amount of time to complete. They are of two types: timed and instantaneous.

Timed activities have durations that impact the performance of the modeled system, and

are represented as hollow ovals. Instantaneous activities represent actions that complete

in a negligible amount of time compared to the other activities in the system. Case

probabilities, represented graphically as circles on the right side of an activity, model

uncertainty associated with the completion of an activity.

Input gates control the enabling of activities and define the marking changes that will

occur when an activity completes. They are represented graphically as triangles with their

point connected to the activity they control. Like input gates, output gates define the

marking changes that will occur when activities complete. The only difference is that

output gates are associated with a single case. They are represented graphically as

triangles with their flat side connected to an activity or a case. The symbols used to

represent the various components of a SAN are present in Appendix C.2.

19

For solution, a SAN is converted into a state-level representation (via markings)

called Stochastic Activity System (SAS). If this is Markovian in nature, a Markov model

is generated and solved.

2.3.2.2 An Example SAN Model

Consider the example of a (M/M/3) system that consists of three processors and an

arrival queue for tasks. With probability s, a processor successfully completes the task

assigned to it. With probability f, a processor fails and is unrepairable, and the task

returns to the queue. Figure 4 shows the SAN model of the system.

The three tokens in place B indicate the three working processors; the place A

indicates the arrival queue of tasks. The activities arrival and process are timed activities

with one and two cases respectively and with rates and probabilities as indicated in the

diagram. Gate G1 is an input gate to monitor capacity of queue: only when there are less

than 5 tasks in the arrival queue is the arrival activity enabled. G2 is an input gate, that

enables the process activity when there are tokens in both places A and B (implicit

condition).

arrival process

B

A G2

G1

s

f

Gate

G1

G2

Enabling
Predicate

Function

MARK(A) < 5

-

;

MARK(A)=MARK(A)-1;
MARK(B)=MARK(B)-1;

Activity

arrival

process

Rate
Probability

lambda

mu

Case1 Case2

1 -

s f

Figure 4: Example SAN Model

20

2.3.2.3 UltraSAN

UltraSAN is an X-window based software tool for evaluating systems that are

represented as Stochastic Activity Networks. UltraSAN3 has been developed by Sanders

et al. [29] at the University of Arizona.

Three main tools are used for model specification: the SAN editor, the composed

model editor, and the

performance model

editor [29]. The SAN

editor expedites the

specification of the

SAN sub-models by

allowing the user to

enter the SAN

graphically. The

composed model

editor is used to draw

a tree representing the

connection of the sub-models. Finally, the performance variable editor is used to specify

reward variables. Rewards may be specified for activity completions or may be based on

specific markings of the model. Figure 5 [29] (reproduced with permission of the

publisher) shows the organization and data flow in UltraSAN.

3 UltraSAN is written using C and X-window interface library and runs on UNIX on DEC, SUN and AT&T
workstations. Extensive support is provided for performability analysis.

SAN Editor
Composed

Model Editor

Performance
Variable
Editor

SAN
desc.

SAN
desc.

SAN
desc.

Composed
Model Desc.

Performability
Variable Desc

Model Desc.

Reduced Base
Model

Constructor

Steady State
Simulator

Terminating
Simulator

Direct Steady
State Solver

Iterative Steady
State Solver

Transient Solver

...

...

© 1991 IEEE

Figure 5: Organization and Data Flow in UltraSAN

21

Both analytical solvers and simulators are provided, and the tool also has a report

generator, which facilitates the generation of graphs and tables from the obtained results.

Steady-state and transient solutions are possible. Largeness of state space is overcome by

constructing a reduced base model [30]. This model retains only the necessary

information for a desired output measure.

2.4 Related Work on Severity and Coincident Failures

When a system in operation does not deliver its intended functionality and quality, it

is said to fail. A failure is an observed departure of the external result of operation from

requirements or user expectations [31]. Failures can be caused by hardware or software

faults (defects), or by how-to-use errors.

2.4.1 Severity of Failures

Severity of a failure is the impact it has on the operation of a system. Severity is

usually closely related to the threat the problem poses in functional (service) terms,

economic (cost) terms, or in case of critical failures, to human life. This is related to the

notion of hazard, which defines what undesirable consequence will potentially result

from the incorrect system operation. An example of a service impact classification is:

critical, major and minor failure. Severity of failures is sometimes used to partition the

operational failure data, and thus make decisions regarding failures of a particular

severity, or to weight the data used in reliability and availability calculations [1].

Severity of failures has been studied in the context of gracefully degrading systems

[32]. In contrast to ultra-reliable systems, which usually achieve a high level of

performance by masking out failures or by switching in spares to replace failed resources,

gracefully degrading systems are designed to provide a high level of service by

22

reconfiguring the system and/or reallocating resources when a failure occurs. The paper

developed models based on Markov processes for modeling severity (as well as

workload) for a multiprocessor system.

Degraded modes of operation have been handled through the concept of a reward

function associated with the Markov process in [33]. A portion of an air traffic control

system (a set of radars) was modeled; as the number of failed radars increased, the reward

(airspace surveillance coverage) decreased.

Predicting the reliability/availability based on the characteristics of a model of the

system provides more objective and concrete information that can be used in assessing

the risk tradeoffs and integrity levels. Appendix D provides a discussion on risk

classification and safety integrity levels that are used to classify failures into different

levels of severity (tolerable/intolerable/acceptable) based on quantitative or qualitative

methods and the kind of demand of operation.

Clearly, severity is an important candidate to weight the data used in reliability

calculations and must be incorporated into the model to determine the probability that the

system survives, including efficient or acceptable degraded operation.

2.4.2 Coincident Failures

Components generally interact with each other during operation, and a faulty

component can affect the probability of failure of other components too [5]. Such

coincident/correlated failures should be modeled in order to get a realistic picture of

system reliability.

23

2.4.2.1 Dependencies within a System

In real systems, there are several kinds of dependencies. Some of these are [34]:

! Repair dependence. Two or more components or subsystems may share a

repair person.

! State-dependent failure rates. It is possible that the failure rate of a component

may depend on the past history of the system. For example, it is possible that

the repair of a component does not restore it to its original state. In that case,

the component may have a larger failure rate after it has been repaired.

! Near-coincident fault dependence. The design of a system may be such that

near-coincident faults cause a system failure, while faults that are separated in

time can be handled individually without overall system failure.

These dependencies/interactions result, for example, from components

communicating for functional purposes, or from the structure of the system, mainly the

distribution of the software components onto the hardware components, or from fault

tolerance and maintenance strategies. They induce dependencies between at least two

components that are usually stochastic in nature. As a result, system dependability

(including reliability) cannot be obtained by combining the dependability of its

components. An overall model accounting for these dependencies is thus needed [35].

2.4.2.2 Modeling Correlation between Failures

Several researchers have considered the problem of modeling correlation between

failures. Two schools of thought emerged, differentiated by the definition of the basic

24

events of interest, the two approaches are called Correlated failures and Differentiated

causes [36].

The correlated failures approach was first considered by Eckhardt and Lee [37], and

their work was later extended by Littlewood and Miller [38]. For the case of two

simultaneous failures, the correlated failures model considers that there are two (possibly

correlated) basic events that are not independent and proposes a modeling framework to

account for the correlation between events. Nicolas and Goyal proposed the use of the

Beta-binomial distribution for modeling correlation within this same framework [39].

The differentiated causes approach was first proposed by Arlat, Kanoun and Laprie

[40] and later adopted by others. This approach differentiates between unrelated and

related faults. For the case of two simultaneous failures, the differentiated causes model

considers that there are three independent basic events.

The correlated causes model provides a good fit to data sets, there are only two

parameters to be considered, and it reduces the amount of simulated execution associated

with the experiments. On the other hand, the differentiated causes model maintains the

statistical independence of the basic events, allowing the use of readily available tools for

analysis.

2.4.2.3 Limitations in Modeling Coincident Failures

The common approach to modeling systems that possess some kind of dependence is

to use a global Markov model. The Markov model of coincident failures in a DEC-VAX

cluster multi-computer system has been developed in [41]. The main problem in this

approach is the state explosion. As stated in Section 2.2.4, the size of a Markov model for

25

the evaluation of a complex system grows exponentially with the number of components

in the system, and developing a global Markov model is particularly tedious.

Given the limitations imposed by non-independence, it is important to develop a

reliability model that accounts for coincident errors. Two possibilities exist: either the

model includes all possible terms including those that cannot be measured within feasible

amounts of time, or the model includes only those parameters which can be measured

within feasible amounts of time. It has been stated that the development of a coincident

error model which can be used to estimate system reliability (for an ultra-reliable system)

within feasible amounts of time is not possible [42].

2.5 Related Work on Usage-Profiles

A software-based product’s reliability depends on just how a customer will use it. The

operational profile – quantitative characterization of how a system will be used – is

essential in software reliability engineering [6]. The same basic concept can be extended

and applied for predicting the system reliability. The idea of operational profiles –

considering the use of a software system during testing; is extended into usage profiles –

the usage of the system (hardware and software) for modeling and reliability analysis.

2.5.1 Usage-Profiles and Performability

It has long been recognized that the workload of a system can influence its

performance. There is also growing recognition that workload can affect system

dependability. In many applications, users interact with a system in an intermittent

fashion, resulting in operational workload profiles that alternate between periods of

“Active” and “Passive” use. Moreover, a user’s specification of desired service often

refers exclusively to the behavior experienced while use is active. Assuming this premise,

26

a system’s behavior during passive periods, particularly how its behavior may be affected

(i.e. altered with respect to its expected/required behavior) by design defects4 and/or

operational faults5, has no direct effect on the quality of the desired service. Accordingly,

the extent to which “usage” is intermittent can affect user-oriented measures of service

quality such as time-to-failure and reliability [7].

Reliability is concerned with the service that is actually delivered by the system as

opposed to a system’s capacity to deliver such service. Specifically, while considering

usage profiles, faults need not necessarily cause failures since they can be repaired;

failures occurring during “active” use of the system only should contribute to reliability

calculations.

2.5.2 Modeling Usage-Profiles or Workload

Accounting for computational demand in analyzing a system’s performance requires

that some type of analytical model be used to represent the system workload, or the

demand for system resources. Representing a system’s workload can be very difficult;

approaches to this problem range from assuming deterministic system inputs to

generating system inputs from specific probability distributions. A workload model is a

model which combines both system structure and demand [32].

2.5.2.1 Experimental Investigations

Some investigations have been mainly experimental using empirical data from

measurements of real systems to correlate workload with various measures of

4 Design defects, whether in hardware or software, are those caused by improper translation of a concept
into an operational realization. Note: hardware unlike software is subject to wear out (mechanical/physical
processes that cause the useful lifetime of a hardware component to end).
5 Operational faults, whether in hardware of software, result from failure of components, physical
interference from the environment and/or operator error.

27

dependability, e.g. Hsueh et al. [43] developed a semi-Markov model to describe the

resource-usage/error/recovery process in a large mainframe system. They developed a

state-transition model to describe the variation in system activity characterized by

measuring a number of resource usage parameters. The separate workload, error and

recovery models developed were then combined into a single model. Their results, from

measurements and real data, indicate that it is important to consider the resource-usage as

much as error rates while analyzing performability of the system. Further, the results

were validated against direct calculations from the actual data, providing support for the

model structure identification method employed in the research.

Castillo and Siewiorek [44] developed a new modeling technology to characterize

failure processes in Time-Sharing systems due to hardware transients and software errors,

recognizing workload-fault interaction for operational faults as well as design faults. In

this work, it is clear that there is a reinforcement effect between workload and lack of

reliability. Higher workload implies that the Kernel of the operating system has to take

more decisions per unit time, increasing the probability of a system failure.

2.5.2.2 Analytic Investigations

On the analytic side, probabilistic models have been used to obtain workload-related

dependability measures. In [45], Markov renewal processes were employed to analyze

the interplay between workload and system fault tolerance mechanisms under the

assumption of instantaneous processing times. Of particular importance was their

analysis of the workload influence on mean time to failure, and the fact that time to

failure can usually be approximated by an exponential random variable. Further, they

28

concluded that the kind of models developed to analyze the influence of workload on

performability could be extended to degradable systems.

Gay [32] developed models based on Markov processes for modeling severity and

workload for a multiprocessor system. The workload model combined both system

structure and demand, the general idea being that failures primarily affect system

structure and cause the system to operate at reduced performance levels, while the

demand on the system determines to what degree the reduced performance is acceptable.

The research demonstrated how capacity and workload models could be used to evaluate

the performance of gracefully degrading systems.

Malhis et al. [46] illustrated a method for determining the performability of group-

oriented multicast protocols, specifically Psync, using Stochastic Activity Networks,

under a wide variety of workload and message loss probabilities. Their analysis showed

that the protocol works well when message transmissions are frequent, but exhibits

extremely long message stabilization times when transmissions are infrequent and

message losses occur. The work presents useful information regarding performability

under a wide range of workloads, and the appropriateness of SANs for analytically

predicting the performance of group-oriented multicast protocols.

Qureshi and Sanders [47] analytically investigated the effect of workload on the

performance and availability of Voting Algorithms. They used Stochastic Activity

Networks to model and analyze a networked LAN environment utilizing particular static

and dynamic voting algorithms. Their work stated that the effect of workload could be

significant, since failures of system components are not important unless they are needed

to deliver a service.

29

The importance of considering workload has also been recognized in [48] where a

methodology for evaluating fault-tolerant systems was presented assuming workloads

and fault arrivals to be non time-homogeneous; in [49] where the effects of shared use on

the dependability of modular software was evaluated in terms of a generally defined

stochastic model; among several others. Recently, a new metric has been designed for

predicting the performance of an application under a growing workload [50].

The studies cited above demonstrate that workload should indeed be accounted for in

the context of dependability evaluation. They also indicate that such evaluations are

generally more difficult than those involving traditional structure-oriented measures.

This research contributes by incorporating the concept of failure severity, coincident

failures and usage-profiles into the model developed for the Anti-lock Braking System of

a passenger vehicle. These characteristics have never been modeled together for this

system, generating a potentially more realistic model (with real data being used to model

failure rates). The strategy of modeling failure severity as spatial uncertainty, coincident

failures as correlation between the failure rates of components and the way usage-profiles

have been incorporated are all innovative in terms of the approach employed to integrate

them into the Stochastic Petri Net and Stochastic Activity Network formalisms (Chapter

4). Further, this study establishes the degree of complexity and the level of abstraction

that is feasible to model and solve utilizing the available resources.

The contribution of this research to the automotive industry is substantial as it offers a

greater insight into the strategy for developing realistic models, and acts as a stepping-

stone for modeling more complex systems and carrying out further analyses (Chapter 6).

30

CHAPTER THREE

AN EXAMPLE EMBEDDED SYSTEM

And she tried to fancy what the flame of a candle is like after the candle is
blown out, for she could not remember ever having seen such a thing.

- Alice in Wonderland

3.1 Basic Overview

The embedded system considered for stochastic modeling and reliability analysis is

the Anti-lock Braking System (ABS), an integrated part of the total braking system in a

vehicle, which avoids

locking of tires when

brakes are applied and

maintains the driver’s

ability to steer. The

various components in

the ABS are also shared

by two other sub-systems:

the Automatic Slip

Reduction (ASR) sub-

system and the Electronic

Steering Assistance

(ESA) sub-system. Figure

6 depicts a state transition

diagram of the system.

Aut omat ic pumping
of t he brakes

Normal
braking

Pressure to
t he brakes

Rear end
sl ides out

Turning the
st eering wheel

Normal
t urn

Apply brakes to t ires on
opposit e side going int o the slide

A pply brakes t o t ires on
side going int o t he slide

O pe r a t in g
t he car

O v e r - s t e e r

Front t ires
sl id e

T ur n ing

U nd e r -
s t e e r

Slipping of any
one wheel

Br a k i n g

Enga ge
A BS

A c c e le r a t e

A pply brakes t o RR t ire

Act ivate
accerat or

pedal

Normal
accelerat ion

Slip bet ween
LR t ire and
road

Slip bet ween
RR t ire and
road

Right Rear
Sl ip a g e

Left Rear
Sl ip a g e

Apply brakes t o LR t ire

Figure 6: Top-level State Transition Diagram

31

3.2 The Anti-lock Braking System Description

Anti-lock Braking System (ABS) is an integrated part of the total braking system in a

vehicle. Applying excessive pressure on the brake pedal, or panic slamming the brake

pedal, can cause wheels to lock up and possibly send the vehicle careening into a

terrifying skid. Excessive brake

pedal pressure often occurs in an

emergency or adverse situation, such

as wet or icy roads [51]. The ABS

prevents wheel lockup during an

emergency stop by modulating the

brake pressure and permits the driver

to maintain steering control while

braking. Figure 7 shows a logical

view of the system operation, based

on the SADT (Structured Analysis and Design Technique). It indicates a choice by a

circle in the upper right hand corner of the box that describes an alternate activity. All

boxes on the same level indicate a sequence of activities starting with the leftmost box.

3.2.1 Components of the ABS

The ABS prevents the wheels of a vehicle from locking up. This is achieved by a

control unit that reduces and increases pressure on the brake cylinders based on the

measured rotational speeds of the wheels through appropriate actions of valves and

pumps. Besides the hydraulic system, it comprises a subsystem for sensing the wheel

speeds and transmitting the respective signals to the control unit [52].

Anti-lock
Braking

controller

Turn car on
Operating the

car
Turn car off

Braking

Make
determination

to engage ABS

Pressure to the
brakes

Release
Pressure to the

brakes

Engage ABS
Do not engage

ABS

Figure 7: Logical View of System Operation

32

The ABS consists of the following major components [53].

! Wheel Speed Sensors - These measure wheel-speed and transmit information

to an electronic control unit.

! Electronic Control Unit (Controller) - This receives information from the

sensors, determines when a wheel is about to lock up and controls the

hydraulic control unit.

! Hydraulic Control Unit (Hydraulic Pump) - This controls the pressure in the

brake lines of the vehicle.

! Valves - Valves are present in the brake line of each brake and are controlled

by the hydraulic control unit to regulate the pressure in the brake lines.

Figure 8 displays the top-level schematic of the system showing the interconnections

Rear

R1

0

90

Anti-lock Breaking / Anti-skid Controller

Disc break (4 indpt)

Wheel speed sensor (4 indpt)

B1-4 = Brakes (LF, RF, LR, RR)

S1-4 = Speed sensors (LF, RF, LR, RR)

R1-2 Turning angles (of the vehicle and the tires respectively)

Brake

Pressure

Master
break

cylinder

Electronic brake
control module

(EBCM)

RR

LF

LR

RF

0

R2

90

Hydraulic
modulator valve

assembly

2

2 4

B1 B2

B3 B4

S3 S4

S1 S2

Accerometer

Figure 8: Top-level Schematic showing Sensors, Processing and Actuators

33

between the components. Anti-lock Braking systems use three different schemes

depending on the type of brake in use [54]. (1) Four channel, four sensor ABS – There is

a speed sensor on all four wheels and a separate valve for all four wheels; (2) Three

channel, three sensor ABS – There is a speed sensor and a valve for each of the front

wheels with one speed sensor and valve for both rear wheels; (3) Two channel, two

sensor ABS – There are two speed sensors and valves for each of the two rear wheels.

3.2.2 Functioning of the ABS

When a driver applies brakes on an ABS-equipped vehicle, wheel sensors monitor the

rotational speed of each wheel. The electronic control unit (ECU) “reads” signals from

the sensors and compares the speed of each

wheel. If one wheel is slowing at a faster rate

than the others, the ECU sees that the wheel is

beginning to lock up. The ECU then orders

the hydraulic control unit (HCU) to reduce the

line pressure to that wheel’s brakes. The HCU

reduces the pressure in that particular brake

line by controlling the valves present there.

Once the wheel resumes normal operation, the

controls restore pressure to its brake.

Depending on the system, this “pulsing” of

brake line pressure can occur at up to 15 times

per second. The result is that the tire slows at the same rate as the vehicle, with the brakes

keeping the tires very near the point at which they will start to lock up. This gives the

Wheel sensors
sense wheel speed

Electronic Control
Unit reads signals

from wheel sensors

ECU signals
Hydraulic Control

Unit to reduce
pressure

HCU reduces brake
line pressure by

controlling valves

Is a wheel
locking up?

Valves open/close
to change pressure

in brake line

No

Yes

Figure 9: Control flow in ABS Functioning

34

system the highest steering capability. This flow of control in the ABS functioning is

shown in Figure 9.

3.2.3 Component Failure Rates

The basic modeling philosophy begins by identifying the essential components of the

system (Section 3.2.1) and the different ways in which they interact. The data collected

from system measurements are used to parameterize the abstract model. System

measurements can help in the process of deciding which components of the system are

important in regards to the measure of interest [12]. Table 1 provides a list of the parts

that are considered in this analysis, along with the respective failure rates6 associated with

critical failure states. The number of components is for a four channel four sensor ABS

scheme.

Table 1: Component Failure Rates associated with critical failure states

6 The data was obtained from DaimlerChysler. The failure rates listed in Table 1 however are dummy
values. The real values we had are protected under a non-disclosure agreement. The same is true for the
data shown in Table 2.

Component Number Failure Rate

Wheel Speed Sensor 4 2.00E-11

Pressure Sensor 4 1.50E-11

Main Brake Cylinder 1 1.00E-11

Pressure Limiting Valve 2 6.00E-13

Inlet Valve 4 6.00E-13

Drain Valve 4 6.00E-13

Toggle Switching Valve 2 6.00E-13

Hydraulic Pump 2 6.80E-11

Pressure Tank 2 2.00E-12

Controller 1 6.00E-12

Tubing 1 3.00E-12

Piping 1 4.00E-12

35

3.3 System Assumptions

Since the system here is very complex, this prevents us from making a direct analysis.

A series of abstraction steps are needed to obtain system measures from the real system.

Initially the system model is created at an abstract level and the data collected from

system measurements (as shown in Table 1) are used to parameterize the abstract model.

In the second abstraction step the computational model is created which allows an easier

and more efficient system analysis [12]. The key element therefore in our modeling

approach was to identify the essential components of the system, the different ways in

which they interact and introduce various assumptions. The details of the assumptions

made are discussed here.

3.3.1 Modes of Operation

As stated in Section 2.4.1, severity of a failure is the impact it has on the operation of

a system and is usually closely related to the threat the problem poses in functional terms.

For the purpose of this discussion, the three different modes of operation of the system

(in presence/absence of failures of different severity) are assumed to be: (1) normal

operation, (2) degraded operation, and (3) lost stability mode; in increasing order of

severity. Critical failures seriously impact the operation of the system, and are assumed to

cause loss of vehicle. Further, if sufficient components of the system have failed to

impact the system operation (either degraded operation or lost stability mode), the sum of

those failures is assumed to be critical, causing loss of vehicle.

3.3.2 Lifetime of a Passenger Vehicle

Essentially the average hours of operation for a passenger vehicle range from 300-600

hours/year and the average lifetime is 10-15 years. Thus, the average life span of a

36

passenger vehicle ranges from 3000 – 9000 hours. This estimate is important while

considering the duration for which to carry out the reliability analysis.

3.3.3 Inter-relationships between Components

To model coincident failures, several dependencies among system components is

assumed. Only those inter-

relationships between components

depicted as solid lines in Figure 10

are explicitly modeled in the

stochastic models. All other possible

inter-relationships between

components (only some of them

depicted as dashed lines in the figure) have been ignored.

Further, for modeling purposes, we assume a four channel four sensor ABS [54]. The

model can be easily modified to represent other ABS schemes.

Tubing

Hydraulic
Pump

Controller
Pressure

Tank

Toggle
Switch

Drain
Valve

Inlet Valve

Figure 10: Inter-dependencies between Components

37

CHAPTER FOUR

STOCHASTIC MODELING FORMALISMS

`Do you mean that you think you can find out the answer to it?' said the
March Hare. `Exactly so,' said Alice.

- Alice in Wonderland

4.1 Stochastic Petri Net Models

In this section, the Stochastic Petri Net (SPN) models developed to model severity of

failures and coincident failures for the ABS, as well as the SPN models developed to

model usage-profiles for the ABS are presented. The extensibility of the models

developed is also discussed.

4.1.1 Modeling Coincident Failures and Severity

The SPNs were input to the Stochastic Petri Net Package tool in CSPL (C-based

Stochastic Petri net Language). Here, the models are discussed in Petri Net form for

clarity. Code is presented for explanation wherever necessary. The entire code listing and

PNs modeling coincident failures and severity can be found in Appendix A.1.

4.1.1.1 Assumptions

To model complex systems, assumptions need to be made. All simplifying

assumptions that were made for modeling coincident failures and severity of failures are

discussed in this section.

4.1.1.1.1 Exponential Failure Rates

To allow a Markov chain analysis, the time to failure of all components is assumed to

have an exponential distribution. This signifies that the distribution of the remaining life

of a component does not depend on how long the component has been operating. The

38

component does not “age” or it forgets how long it has been operating, and its eventual

breakdown is the result of some suddenly appearing failure, not of gradual deterioration

[8].

How do things fail? Reasons for failures occurring in an embedded system (in the

domain being considered) can be categorized into the following four classes: (1)

Communication failure between distributed components, processing units, sensors and

actuators, (2) Mechanical failures (including wear and tear) of components like the

piping, brake cylinders and axles, (3) Timing errors attributed to software, and (4)

Software design errors that lie dormant and manifest themselves when the right input

triggers them.

Hardware components. The assumption of an exponential failure rate holds true for

electronic components and has been widely accepted for modeling hardware failures. At

the same time, the failure of other mechanical parts like valves might occur due to

gradual deterioration. However, mechanical parts are generally replaced at regular

intervals and essentially can be assumed not to age. Hence, the assumption of an

exponential distribution of failures for all hardware components is justified.

Software components. Normally, software is considered to have a negative

exponential failure curve. Repeated testing and fixing of errors in the software makes it

more robust and the probability of a failure decreases with time. However, for the

development phase being considered (beyond the testing phase), any residual software

design error present after testing will remain in the product. The probability of any

lurking defect being triggered by the right input increases with the passage of time.

39

Hence, the assumption of an exponential distribution of failures for all software

components is justified.

4.1.1.1.2 Impact of Severity and Coincident Failures

To consider the severity of failures, every component is assumed to operate in three

modes (See Section 3.3.1): normal operation, degraded operation or causing loss of

stability. The system is assumed to fail when more than five components function in a

degraded state, or more than three components cause loss of stability, or the failure of an

important component causes the loss of the vehicle. A component operating in a degraded

condition causes its failure rate to increase by two orders of magnitude, while a

component causing loss of stability causes the failure rate to increase by four orders of

magnitude. (See Appendix D for a discussion on severity integrity levels.)

The correlation between failure rates of two “related” components (to model

coincident failures) is consistent with the above scheme. The correlated failures

considered for the purpose of this study include only hardware components. Coincident

failures are also important in software because errors can be propagated and it is difficult

to predict how, when and where they will manifest. The actual behavior may not relate

very well to the root cause. While the correlation in hardware failure is physical, the

correlation in software errors is mainly informational. Thus, I have not attempted to

model coincident failures in software in this research. However, any such correlation

between software components can be modeled in an identical manner. The details of how

failure severity and coincident failures are modeled are presented in the next section.

40

4.1.1.2 The SPN Model

To model the inter-dependence in the Anti-lock Braking System it is important to use

a global Markov model. The ABS is represented as a combination of all the important

components it

consists of, as

shown in Figure 11

(The actual Petri

Net Model is shown

in Appendix A.1).

The components are

sorted into two

groups: central and

axle. The

components under

axle are further

segregated according to the corresponding wheel – FRWheel (Front Right Wheel),

FLWheel (Front Left Wheel), RRWheel (Rear Right Wheel) and RLWheel (Rear Left

Wheel). This division into groups is representative of the number of a given component

present in the system. A component like the Wheel Speed Sensor, one for each wheel,

finds its place under each of the four wheel categories (FRWheel, FLWheel, RRWheel

and RLWheel). A component like the Hydraulic Pump, one for each axle, finds its place

in the axleCentral group under the axle place. A component like the Main Brake

Cylinder, of which there is only one instance, finds its place under the central category.

start

braking

axlecentral

central_op axle_op

mbrakecyl controller tubing piping

FLWheel

FRWheel RRWheelRLWheelaxleCentral

loss_of_vehicleloss_of_stabilitydegraded_operation

Figure 11: The SPN Model for ABS

41

The problem of large state space has been handled by avoiding the use of multiple places

to denote multiple instances of the same component (where possible). Each component

has its own model, shown as dashed rectangles in Figure 11. The model for the controller

component (shaded rectangle) is depicted in Figure 12 and discussed in the next section.

4.1.1.2.1 Modeling Severity of Failures

The model shown in Figure 11 also depicts the operation of the ABS under normal,

degraded and lost stability conditions. The places degraded_operation, loss_of_stability

and loss_of_vehicle model the severity of failure. The system is functioning normally

when there are no tokens in any of these three places. Loss of vehicle (indicated by a

token in the loss_of_vehicle place), extreme loss of stability (indicated by three tokens in

loss_of_stability place) or extreme degraded operation (indicated by five tokens in

degraded_operation place) signify

critical failures and determine the

halting condition for the model. The

model is instantiated with a single

token in the start place. When the

central_op and the axle_op transitions

fire, a token is deposited in each place

that represents a component of the

ABS. The operation of each

component is now independent of

every other component (except where

coincident failures are modeled

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS

degraded_operation loss_of_stability loss_of_vehicle

Figure 12: The SPN Model With Coincident
Failures and Severity

42

explicitly e.g., the coincidence between the controller and the tubing is modeled

explicitly while defining the failure rate for controller. See Section 4.1.1.2.2 for details).

The model of a component of the ABS is shown in Figure 12. The component

depicted here is the controller. Every component either functions “normally” as shown by

the controllerOp transition or “fails” as shown by the controllerFail transition. A failed

component may either cause degraded operation, loss of stability or loss of vehicle (as

represented by the controllerDegradedOp, controllerLOSOp and controllerLOV

immediate transitions respectively). The probability of any one of these three transitions

occurring (obtained from measures on the real system) is different for each component.

Table 2 lists the failure rates and probabilities of failure of different severities for all

components (the data is protected under a non-disclosure agreement and has been

falsified). When the failure causes either degraded operation or loss of stability, the

component continues to operate (token recycled back to the controller place), though the

failure rate increases by two and four orders of magnitude respectively.

Table 2: Probability of failures of different severity

ProbabilityComponent # Base Failure Rate

Degraded
operation

Loss of
Stability

Loss of
Vehicle

Wheel Speed Sensor 4 2.00E-11 0.38 0.62 -

Pressure Sensor 4 1.50E-11 0.64 0.36 -

Main Brake Cylinder 1 1.00E-11 - - 1.0

Pressure Limiting Valve 2 6.00E-13 - 0.22 0.78

Inlet Valve 4 6.00E-13 - 0.18 0.82

Drain Valve 4 6.00E-13 - 0.19 0.81

Toggle Switching Valve 2 6.00E-13 1.0 - -

Hydraulic Pump 2 6.80E-11 - - 1.0

Pressure Tank 2 2.00E-12 - - 1.0

Controller 1 6.00E-12 0.2 0.4 0.4

Tubing 1 3.00E-12 0.33 - 0.67

Piping 1 4.00E-12 0.33 - 0.67

43

4.1.1.2.2 Modeling Coincident Failures

To model coincident failures, several dependencies among system components are

assumed, as shown in Figure 10 (Section

3.3.3). Coincident failures are modeled in

a manner similar to severity of failures.

“Coincidence” of failures of two

components is modeled by causing the

failure of one component (to degraded

operation or loss of stability) to increase the failure rate of the dependent component. The

rule for calculating failure rates is shown in Figure 13. The failure of a component A to a

degraded mode causes the failure rate of a “related” component B to increase by two

orders of magnitude. The failure of component A to a lost stability mode causes the

failure rate of a “related” component B to increase by four orders of magnitude. (There

was no data available to confirm or validate this assumption for modeling coincident

failures.)

SPNP provides a function void ratefun(char* t, double (*func()); that defines the

firing rate of transition t to be the value of marking-dependent function func, evaluated in

the current marking.

The function

that calculates the

failure rate of the

transition

controllerFail is shown in Figure 14. It is assumed that a tubing malfunction affects the

double controllerRate()
{

double controller_rate = 0.0000006;

if (mark("controllerLOS") > 0) return controller_rate * 10000;
if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0))

return controller_rate * 100;
return controller_rate;

}

Figure 14: Variable Rate to Model Coincident Failures

function failureRateForB()
{

// other calculations for severity of failure

// coincident failures
if failedA(degraded) then

failureB = failureB * 100;
else if failedA(loss of stability) then

failureB = failureB * 10000;
}

Figure 13: Rule for Calculating Failure Rates

44

operation of the controller. Hence, while calculating the failure rate of the controller, the

normal rate is increased by two orders of magnitude if the tubing has failed causing

degraded operation (indicated by a token in the tubingDegraded place).

Only a few coincident failures have been represented in the model. However,

coincident failures between other components (or among more than two components) can

be easily modeled by suitably modifying the failure rate function of the relevant

components using the rule shown in Figure 13. The importance of this rule in the context

of extensibility of the developed model is discussed in Section 4.1.4.

4.1.2 Modeling Usage-profiles

The Stochastic Petri Nets were encoded using CSPL (C-based Stochastic Petri net

Language) and subsequently analyzed using the Stochastic Petri Net Package (SPNP)

tool. Here, the models are discussed in Petri net form for clarity. Code is presented for

explanation wherever necessary.

4.1.2.1 Assumptions

To model complex systems, assumptions need to be made. All simplifying

assumptions that were made for modeling usage-profiles are discussed in this section.

4.1.2.1.1 Infinite Repair Rate

Unlike traditional reliability models where repair of components is not considered,

when considering intermittent use it is important to note that faults need not necessarily

cause failures. Faults occurring only during the active use cause failures while those

occurring during passive use can be repaired. Hence, repair can affect reliability

calculations. For simplicity, we assume an infinite repair rate of all components, implying

that all repairs, if any, occur instantaneously [7].

45

4.1.2.1.2 Usage Profiles: Low Usage and High Usage

To comprehend the significance of intermittent use on reliability, we assume two

usage-profiles exceedingly different in degree. The first profile (Low Usage) models

sparse use of the Anti-lock Braking System e.g., a driver who is extremely cautious while

driving the vehicle (longer periods of passive use). The second usage profile (High

Usage) models dense use of the anti-lock braking system e.g., a driver in perilous

conditions like driving over ice (frequent active use periods). The second usage-profile is

assumed to have a rate two orders of magnitude greater than the first usage profile.

4.1.2.1.3 Exponentially Distributed Workload and Failure Rates

For simplicity and to allow Markovian analysis, the active period is assumed to be

exponentially distributed, as are the failure rates of the components. To work around the

stiffness problem in Petri nets caused by the difference in magnitude between the failure

rates of the components and the active period duration distribution rates, the duration

distribution rates are assumed to be factored by the failure rates of individual

components. The details of how this is accomplished are the topic of the next section.

4.1.2.2 The SPN Model

The global model of the ABS, represented as a combination of all the important

components it consists of, remains unchanged (Figure 11). To incorporate the usage-

profiles in the ABS model, the model of each individual component (like the controller

depicted in Figure 12) is extended as shown in Figure 15. The figure shows the

controller, with the bold lines indicating the additions to the model. In case of a failure

(failedController), the model differentiates between the two situations regarding whether

the system was in active use (along the branch to transition labeled mu) or not (along the

46

branch to transition labeled alpha).

The parameter 1/mu indicates the

mean duration of active use while

the parameter 1/alpha indicates the

mean duration of passive use. As

stated earlier, the active period is

assumed to be exponentially

distributed.

In the case where the failure

occurs during the active period

(inUseController), the system

either continues to operate in the

degraded mode (controllerDegradedOp), or lost stability mode (controllerLOSOp), or

causes loss of vehicle (controllerLOVOp). In the case where the failure occurs during

passive use of the system (repairableController), the fault can be repaired and an infinite

repair rate is assumed. The system continues to operate as if no failure had occurred. The

model can be extended to associate a cost with

each time the failed component must be

repaired, if required.

Generally, each component’s model is

updated to match the bold arrows in the state

diagram shown in Figure 16 [7] (adapted with

permission from original author). Prior to

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS

degraded_operation
loss_of_stability loss_of_vehicle

inUseController repairableController

alphamu

repair

Figure 15: SPN Model with Usage-Parameters

00 01

10 F

alpha

mu

mu

lambda lambdav

Figure 16: State Diagram for Reliability
Evaluation

47

failure, each component is assumed to be in one of the three states: fault-free and passive

(00), fault-free and active (01), and fault but passive (10). The parameter mu indicates

transition to active state, the parameter alpha indicates transition to passive phase, while

the parameter lambda indicates a failure and the parameter v indicates repair.

To work around the state explosion problem occurring due the evident increase in the

number of states

in the model (as

shown in Figure

15), it is

simplified to

incorporate the

usage parameters

while calculating the failure rate itself for each component. The modified function for

calculating the failure rate in light of the usage-profile is shown in Figure 17. Essentially,

the failure rate (considering only usage-parameters) is the sum of the failure rates mu and

lambda. As stated in the assumptions, the value of these usage parameters was factored

by the actual failure rate of the component to avoid stiffness in the model. The value of

mu is assumed to be 2.5 for infrequent active use periods (low-usage) and 250 for

frequent active use periods (high-usage). If more information about usage becomes

available, then it is easy to revise the values of mu to make the model more realistic.

4.1.3 Specifying Reliability Measures and Halting Condition

For a Stochastic Reward Net (SRN), all output measures are expressed in terms of the

expected values of reward rate functions [19]. Depending on the quantity of interest, an

double controllerRate()
{

double controller_rate = 0.0000006;

// usage parameter
controller_rate += controller_rate * mu();

if (mark("controllerLOS") > 0) return controller_rate * 10000;
if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0))

return controller_rate * 100;
return controller_rate;

}

Figure 17: Variable Rate to Model Usage Parameter

48

appropriate reward rate is defined.

To study the reliability of the system

at time t, it is sufficient to define a

single set of 0/1 reward rates. Figure

18 shows the function used to

compute the reward rate for

determining the reliability of the system, for each of the SPN models described in the

above two sections (4.1.1 and 4.1.2).

This function is used as an input argument to the function void pr_expected(char*

string, double (*func)()); provided by SPNP that computes the expected value of the

measure returned by the function func. The expected value of the reliability at different

instances of time is calculated by making a call to the function void solve(double t)); to

solve the Markov chain at time t before making a call to function pr_expected().

Since, the SPN models described above recycle tokens when the system is either

operating in normal mode or degraded mode, it is necessary to explicitly impose a halting

condition to indicate an absorbing state. The function void halting_condition(int

(*gfunc)()); defines the halting condition gfunc for the SPN. When this function

evaluates to zero, the marking is

considered to be absorbing.

As stated before, the system is

assumed to fail (absorbing state)

when more than five components

function in a degraded state, or more than three components cause loss of stability, or the

int halt()
{

if((mark("loss_of_vehicle") >= 1) ||
(mark("loss_of_stability") >= 3) ||

(mark("degraded_operation") >= 5))
return 0;

else
return 1;

}

Figure 19: Function to Evaluate for Halting Condition

double reliab()
{

double reward;
if((mark("loss_of_vehicle") >= 1) ||

(mark("loss_of_stability") >= 3) ||
(mark("degraded_operation") >= 5))

reward = 0;
else

reward = 1;
return reward;

}

Figure 18: Function to Calculate Reliability Reward

49

failure of an important component causes the loss of the vehicle. Figure 19 shows the

function used to evaluate the present marking for the halting condition.

4.1.4 Extensibility of the SPN Model

The SPN models developed for modeling coincident failures and severity (described

in Section 4.1.1) and usage-profiles (described in Section 4.1.2) are easily extensible. The

global SPN Model can be extended to include other components deemed relevant to the

ABS by including their corresponding sub-models. The sub-models, in turn, would be

simple reproductions of the sub-models for other components with different failure rates

and probabilities. The model, developed for the four channel four sensor ABS, can be

adapted to model other schemes of the ABS, by suitably changing the numbers of the

relevant components modeled (by either removing/adding the respective place, or

updating the failure rate).

Inter-dependencies between other components (or among more than two components)

culminating in coincident-failures can be modeled by updating the failure rates of the

relevant components using the rule for calculating the failure rates shown in Figure 13.

Different categorizations for severity of failure can be used by simply updating the sub-

models of the components to include the necessary places depicting the severity level

(replacing the degraded_operation, loss_of_stability and loss_of_vehicle places). The

SPN model representing usage profiles can be updated to represent different usage-

parameters or intensity of workload by simply changing the value of mu. The model can

be extended to associate a cost with each time the failed component must be repaired, by

adding an additional place to keep track of the number of times the component has been

repaired denoted by the number of tokens in this place. Cost is important in the

50

commercial world where optimizing the cost for production runs of 200K-500K units can

have significant savings impact.

However, since the model is an abstraction of a real world problem, predictions based

on the model must be validated against actual measurements collected from the real

phenomena. A poor validation may suggest modifications to the original model [8]. The

results from the analyses of each of the above-discussed models using SPNP (Stochastic

Petri Net Package) version 6 are presented in Section 5.1.

4.2 Stochastic Activity Network models

In this section, the Stochastic Activity Network (SAN) models developed to model

severity of failures and coincident failures for the ABS, as well as the SAN models

developed to model usage-profiles for the ABS are presented. The extensibility of the

models developed is also discussed.

4.2.1 Modeling Coincident Failures and Severity

The SANs were input to the UltraSAN tool graphically. Here, the composed model

and the individual subnet Central_2 are discussed. Code is presented for clarity, wherever

necessary. The entire array of subnet models developed and the corresponding code

snippets for modeling coincident failures and severity can be found in Appendix B.1.

4.2.1.1 Assumptions

To model complex systems, assumptions need to be made. All simplifying

assumptions that were made for modeling coincident failures and severity of failures are

discussed in this section.

51

4.2.1.1.1 Exponential Failure Rates

To allow a Markov chain analysis, the time to failure of all components is assumed to

have an exponential distribution. This signifies that the distribution of the remaining life

of a component does not depend on how long the component has been operating. The

component does not “age” or it forgets how long it has been operating, and its eventual

breakdown is the result of some suddenly appearing failure, not of gradual deterioration

[8].

4.2.1.1.2 Impact of Severity and Coincident Failures

To consider the severity of failures, every component is assumed to operate in three

modes: normal operation, degraded operation or causing loss of stability. The system is

assumed to fail when more than five components function in a degraded state, or more

than three components cause loss of stability, or the failure of an important component

causes the loss of the vehicle. A component operating in a degraded condition causes its

failure rate to increase by two orders of magnitude, while a component causing loss of

stability causes the failure rate to increase by four orders of magnitude. The correlation

between failure rates of two “related” components (to model coincident failures) is

consistent with the above scheme. The details of how this is accomplished are the topic of

the next section.

4.2.1.2 The SAN Model

As stated before, to model the inter-dependence in the Anti-lock Braking System it is

important to use a global Markov model. The composed model for the ABS is shown in

Figure 20. The model consists of three individual SAN sub models: Central_1,

Central_2 and Wheel. The Wheel subnet is replicated four times to model the four wheels

52

of the vehicle. The division

into these three sub-

categories is done to

facilitate the representation

of coincident failures. As

depicted in Figure 10, the

inlet valve and the drain

valve are correlated, and so are the components listed under the group Central_2. All

components under Central_1 are assumed to be independent of each other (for the

purpose of this study). Such a distribution/categorization avoids replicating of subnets

where unnecessary (for modeling severity and coincident failures) and thereby prevents

the potential state explosion problem.

4.2.1.2.1 Modeling Severity of Failures

All subnets when combined to form the composed model share some common places:

degraded, LOS, LOV and halted. The first three places model the severity of failure,

while the halted place is relevant in context of the halting condition and is discussed in

Section 4.2.3. The Central_2 subnet is shown in Figure 21. The presence of tokens in

degraded, LOS and LOV models the system operation under degraded mode, loss of

stability and loss of vehicle respectively (the same concept as in the SPN models). The

system is operating normally when there are no tokens in any of these three places.

The subnet is instantiated with a single token in the central_2 place. The central2_op

activity fires and deposits a token in each of the five places: hydraulicPump,

pressureTank, toggleSwitch, controller and tubing. The portion of the subnet for the

Hydraulic Pump

Toggle Switch
Pressure Tank

DrainValve
InletValve

Replicate(4)
Central

Wheel

Join

Main brake cylinder

Piping

Hydraulic Pump
Pressure Sensor
Speed Sensor Toggle Switch

Limiting Valve

Pressure Tank

DrainValve
InletValve
DrainValve
InletValve

Replicate(4)
Central_1

Wheel

Join

Tubing
Controller

Central_2

Figure 20: The ABS Composed SAN Model

53

controller component is highlighted in Figure 21 and discussed here in the context of

severity of failures. The controllerFail activity models the failure of the controller. There

are three possible outcomes of this activity. The controller either fails causing degraded

operation (with probability 0.2, output gate controllerDegraded_out), or causes loss of

stability (with probability 0.4, output gate controllerLOS_out), or causes loss of vehicle

(with probability 0.4, output to LOV). In the former two cases the controller continues to

operate in a degraded manner, as is evident by the recycling back of the token to the

controller place. Further, the failure rate in this situation increases by two (for degraded)

and four (for loss of stability) orders of magnitude respectively. The code snippet that

achieves this is shown in Figure 22.

central_2 central2_op

central2_out

hydraulicPump

pressureTank

controller

tubing

hydraulicPumpFail

pressureTankFail

controllerFail

tubingFail

toggleSwitchDegraded_out

controllerLOS_out

tubingDegraded_out

toggleSwitchDegraded

controllerLOS

tubingDegraded

LOV

LOS

degraded

halt_test
halttoggleSwitch toggleSwitchFail

controllerDegraded_out

controllerDegraded

halted

HPFailInhibit

PTFailInhibit

TSFailInhibit

haltInhibit

CFailInhibit

TFailInhibit

Figure 21: Central_2 Subnet with the Controller Component Highlighted

54

UltraSAN requires the failure rate to be specified in a single statement, hence the use

of the special if-then-else construct available in the C programming language. Consider

the controllerFail activity. If the controller fails causing degraded operation (i.e.,

MARK(controllerDegraded)!=0), it continues to function manifested by recycling the

token back to the controller place, and the failure rate for the controllerFail activity

increases by two orders of magnitude (i.e. controllerRate*100). Similarly, if the

controller fails causing loss of stability (i.e., MARK(controllerLOS)!=0), it continues to

function manifested by recycling the token back to the controller place, and the failure

rate for the controllerFail activity increases by four orders of magnitude (i.e.

controllerRate*10000).

4.2.1.2.2 Modeling Coincident Failures

As in the SPN models, “Coincidence” of failures of two components is modeled by

causing the failure of one component (to degraded operation or loss of stability) to

increase the failure rate of the dependent component. The failure of a component A to a

degraded mode causes the failure rate of a “related” component B to increase by two

orders of magnitude. The failure of component A to a lost stability mode causes the

Activity

controllerFail

Rate
Probability

MARK(controllerLOS) !=0?
controllerRate*10000:

(MARK(controllerDegraded) !=0
|| MARK(tubingDegraded) !=0

?controllerRate*100
:controllerRate)

Case1 Case2

0.4 0.4

Case3

0.2

hydraulicPump
Fail

MARK(controllerLOS) !=0?
hydraulicPumpRate*10000:

(MARK(controllerDegraded) !=0
?hydraulicPumpRate*100

:hydraulicPumpRate)

1.0 - -

Figure 22: Activity Rates Model Severity and Coincident Failures

55

failure rate of a “related” component B to increase by four orders of magnitude. Figure 22

shows the rates for the activities modeling the failure of the controller and the hydraulic

pump (other component failure rates as modeled in a similar manner). Case 1, 2 and 3

represent the probabilities of the failure causing loss of vehicle, loss of stability and

degraded mode respectively.

Since UltraSAN requires the failure rate to be specified in a single statement, the

special if-then-else construct available in the C programming language is used. Consider

the controllerFail activity. Since a failed tubing (in degraded mode) is assumed to affect

the failure rate of the controller, if the number of tokens in the tubingDegraded place is

not zero (i.e., MARK(tubingDegraded)!=0), the failure rate for the controller increases by

two orders of magnitude (i.e., controllerRate*100). Similarly, for the hydraulicPumpFail

activity, I have assumed that a failed controller affects the failure rate of the hydraulic

pump. Thus, the failure rate for the hydraulic pump increases by four orders of magnitude

if the controller has failed causing loss of stability, and increases by two orders of

magnitude if the controller is operating in a degraded mode.

Only a few coincident errors have

been modeled (as shown in Figure 10).

However, coincident failures between

other components (or among more

than two components) can be modeled

in a similar fashion. The general

programming construct for modeling

coincident failures between two components A and B (where A is dependent on B) is

MARK(componentBLOS)!=0 ?
componentARate*10000 :
(MARK(componentBDegraded)!=0 ?
componentARate*100 : componentARate).

Is Equivalent to:

if(MARK(componentBLOS)!=0)
return componentARate*10000;

else if(MARK(componentBDegraded)!=0)
return componentARate*100;

else return componentARate;

Figure 23: Construct to Model Coincident Failures

56

shown in Figure 23. The translation to the simple C if-else statement is also presented for

clarity.

4.2.2 Modeling Usage-profiles

The SANs were input to the UltraSAN tool graphically. Here, the composed model

and the individual subnets are discussed. Code is presented for clarity, wherever

necessary.

4.2.2.1 Assumptions

To model complex systems, assumptions need to be made. All simplifying

assumptions that were made for modeling usage-profiles are discussed in this section.

4.2.2.1.1 Usage Profiles: Low Usage and High Usage

To comprehend the significance of intermittent use on reliability, we assume two

usage-profiles exceedingly different in degree. The first profile (Low Usage) models

sparse use of the Anti-lock Braking System e.g. a driver who is extremely cautious while

driving the vehicle (longer periods of passive use). The second usage profile (High

Usage) models dense use of the anti-lock braking system e.g. a driver in perilous

conditions like driving over ice (frequent active use periods).

4.2.2.1.2 Exponentially Distributed Workload and Failure Rates

For simplicity and to allow Markovian analysis, the active period is assumed to be

exponentially distributed, as are the failure rates of the components. The second usage-

profile is assumed to have a rate one order of magnitude greater than the first usage

profile. To work around the stiffness problem in Petri nets caused by the difference in

magnitude between the failure rates of the components and the active period duration

distribution rates, the duration distribution rates are assumed to be factored by the failure

57

rates of individual components. The details of how this is accomplished are the topic of

the next section.

4.2.2.2 The SAN Model

The composed SAN model for the ABS remains unchanged while modeling usage-

profiles. The individual component’s model within each subnet needs to be updated to

handle usage, as depicted in Figure 16 and discussed in section 4.1.2.

To work around the state

explosion problem occurring due the

evident increase in the number of

states in the model (for a component

in passive and active modes), the

model is simplified to incorporate

the usage parameters while

calculating the failure rate itself for each component. The modified construct calculating

the rate for each failure activity in light of the usage-profile is shown in Figure 24. The

translation to the simple C if-else statement is also presented for clarity.

The parameter 1/mu indicates the mean duration of active use of a given component.

To calculate the failure rate of the component, the actual failure rate is added to the active

usage rate (mu factored by the actual failure rate to avoid stiffness due to the evident

difference in the orders of magnitude). The remaining constructs for severity and

coincident failures remain unchanged. The value of mu is assumed to be 2.5 for

infrequent active use periods (low-usage) and 25 for frequent active use periods (high-

usage).

MARK(componentBLOS)!=0 ?
(componentARate+componentARate*mu)*10000 :
(MARK(componentBDegraded)!=0 ?
(componentARate+componentARate*mu)*100 :
(componentARate+componentARate*mu)).

Is Equivalent to:

if(MARK(componentBLOS)!=0)
return (componentARate+componentARate*mu)*10000;

else if(MARK(componentBDegraded)!=0)
return (componentARate+componentARate*mu)*100;

else return (componentARate+componentARate*mu);

Figure 24: Construct to Model Usage-Profiles

58

4.2.3 Specifying Reliability Measures and Halting Condition

The required reliability measure is defined as a reward rate function. While it is

sufficient to define a single set of 0/1 reward rates to study the reliability of the system at

time t (the way the reward rate was defined for the SPN models in Section 4.1.3), the

reward rates for the SAN model are defined to take the degraded operation of the system

into consideration.

In UltraSAN, reward rates are specified using a predicate and a function. The

function represents the rate at which the reward is accumulated in the states when the

predicate evaluates to true. The reward is 0 when the predicate evaluates to false by

default [28]. Figure 25 shows the

reward rate used to calculate

reliability. As long as the system is

functioning (i.e., not in an

absorbing state), the reward rate accumulates as a function of the number of tokens in the

degraded, LOS and LOV places. The function evaluates to 1.0 when there are no tokens

in any of those three places indicating normal operation and complete reliability. The

reliability is 0 when the system has stopped functioning (in absorbing state). For all other

states, the reliability ranges from 1.0 to 0.0 depending on how degraded the system is

(indicated by the number of tokens in those three places).

Since, the SAN models described above recycle tokens when the system is either

operating in normal mode or degraded mode, it is necessary to explicitly impose a halting

condition to indicate an absorbing state. The halted place common to all the subnets is

used to specify the halting condition for the model. Five or more tokens in degraded, or

Predicate:
MARK(halted)==0

Function:
1.0/(1+MARK(degraded)+MARK(LOS)+MARK(LOV))

Figure 25: Reward Rate to Calculate Reliability

59

three or more tokens in LOS, or one or more token in LOV, causes a token to appear in

halted. The presence of a token in this place is the indication of an absorbing state in the

corresponding stochastic activity system. This is achieved by having an input condition

on each activity stating that the activity is enabled only if there is no token in the halted

place (i.e., MARK(halted)==0). The presence of a token in halted thus disables all the

activities in the model, thereby causing an absorbing state.

4.2.4 Extensibility of the SAN Model

The SAN models developed for modeling coincident failures and severity (described

in Section 4.2.1) and usage-profiles (described in Section 4.2.2) are easily extensible. The

composed SAN model can be extended to include other components deemed relevant to

the ABS by adding other subnets, or including the components as part of an existing

subnet. A component is modeled just like other existing components, with its own failure

activity and the corresponding output cases and probabilities.

Adding more components into the model can however lead to the state explosion

problem because of the interleaving of the different token configurations within the

subnet itself as well as among all the subnets in the composed model. The best way to

handle such cases is to avoid using multiple places to denote multiple instances of the

same component where possible (e.g., instead of using two places to denote the two

axles, use a single place with the associated activity having a failure rate twice the failure

rate for one axle). If it is absolutely imperative to model the two axles separately, then

use Replicate, because then UltraSAN can take advantage of the State Lumping Theorem

that allows the generation of a smaller state space.

The model, developed for the four channel four sensor ABS, can be adapted to model

60

other schemes of the ABS, by suitably changing the numbers of all the relevant

components modeled (by either removing/adding the respective place, or updating the

failure rate as described above).

Different categorizations for severity of failure can be used by simply updating the

sub-models of the components to include the necessary places depicting the severity

level. The levels of severity can also be altered by changing the number of tokens in each

of the “severity” indicating places necessary to cause the system to halt (i.e., the halting

condition). Different levels of severity can also be modeled by multiplying the failure rate

of the affected component by a different scalar (other than 100 and 10000 for degraded

mode and lost stability respectively). Inter-dependencies between other components (or

among more than two components) which cause coincident-failures can be modeled by

updating the rates of the activities that model failure of those components using the

construct shown in Figure 23.

The SAN model representing usage profiles can be updated to represent different

usage-parameters or intensity of workload by simply changing the value of mu in Figure

24. The model can be extended to associate a cost with each time the failed component

must be repaired, by adding an additional place to keep track of the number of times the

component has been repaired (denoted by the number of tokens in this place).

However, since the model is an abstraction of a real world problem, predictions based

on the model must be validated against actual measurements collected from the real

phenomena. A poor validation may suggest modifications to the original model [8]. The

results from the analyses of each of the above-discussed models using UltraSAN version

3.5 are presented in Section 5.2.

61

4.3 Comparing the SPN and the SAN Models

The differences in the modeling strategies for the SPN and the SAN models as well as

the difference in the models themselves, which have been described in Sections 4.1 and

4.2 respectively, are discussed here.

4.3.1 Modeling conflicts: Temporal uncertainty vs. Spatial uncertainty

As discussed in Section 2.3.2, while SANs have a natural way of representing spatial

uncertainty as well as temporal uncertainty, SPNs on the other hand permit the

representation of only temporal

uncertainty. This distinction affects the

way failure transitions are represented

in either formalism.

When a component fails, there are

up to three possibilities – either it

causes the system to operate in a

degraded mode, or in lost stability

mode, or causes loss of vehicle. Being

limited to temporal uncertainty in

SPNs, this has been modeled as a

conflict between three immediate

transitions with different probabilities associated with each (using the void

probval(char*, double) function available in SPNP which associates an un-normalized

probability to an immediate transition) and is highlighted in the SPN model for the

controller component in Figure 26. This mechanism consists of a discrete probability

controller

controllerOp
controllerFail

failedController

controllerDegradedOp controllerLOSOp controllerLOVOp

controllerDegraded controllerLOS

degraded_operation loss_of_stability loss_of_vehicle

Figure 26: Modeling Uncertainty - SPN Model of
Controller

62

distribution function associated with the set of conflicting transitions, and the conflict

among immediate transitions are randomly solved.

On the other hand, SANs have a more intuitive way of modeling this uncertainty.

Case probabilities, represented graphically as circles on the right side of an activity,

model uncertainty

associated with the

completion of an activity.

There is a probability

distribution associated with

each of the output cases,

and this models the uncertainty (in the outcome) at completion time of the associated

activity. The uncertainty upon completion of an activity modeling a failure is hence easily

represented as illustrated in Figure 27 for the controller component.

4.3.2 Specifying the Halting Condition

Since, both the SPN and the SAN models of the ABS recycle tokens when the system

is either operating in normal mode or degraded mode, or even after a component is

repaired under passive-use conditions, it is necessary to explicitly impose a halting

condition to indicate an absorbing state. The function void halting_condition(int

(*gfunc)()); defines the halting condition gfunc for the SPN. When this function

evaluates to zero, the marking is considered to be absorbing. Figure 19 shows the halting

condition for the SPN models.

However, specifying the halting condition for the SAN models isn’t so

straightforward. Figure 28 illustrates the construct to determine the halting condition in

controllerFail

controllerLOS_out

controllerLOS

controllerDegraded_out

controllerDegraded

controller

to LOS

to LOV

to degraded

from Central2_out

Figure 27: Modeling uncertainty- SAN Model of Controller

63

the SAN model. As discussed in Section 4.2.3 The function in the input gate halt_test

deposits a token in halted place when there are five or more tokens in degraded, or three

or more tokens in LOS, or one or more token in LOV. The presence of a token in this

place is an indication of an absorbing state in the corresponding stochastic activity

system. This is achieved by having inhibiting conditions (modeled in input gates

HPFailInhibit, PTFailInhibit, TSFailInhibit, haltInhibit, CFailInhibit and TFailInhibit)

on each activity stating that the activity is enabled only if there is no token in the halted

place (i.e., MARK(halted)==0).

central_2 central2_op

central2_out

hydraulicPump

pressureTank

controller

tubing

hydraulicPumpFail

pressureTankFail

controllerFail

tubingFail

toggleSwitchDegraded_out

controllerLOS_out

tubingDegraded_out

toggleSwitchDegraded

controllerLOS

tubingDegraded

LOV

LOS

degraded

halt_test
halttoggleSwitch toggleSwitchFail

controllerDegraded_out

controllerDegraded

halted

HPFailInhibit

PTFailInhibit

TSFailInhibit

haltInhibit

CFailInhibit

TFailInhibit

Figure 28: Construct to Determine Halting Condition in SAN Model

64

4.3.3 Composed Model Specification

It is cumbersome to specify the large ABS system in terms of a single SPN. Consider

the complex and cryptic global SPN model as illustrated in Appendix A.1. SAN models,

however, can be combined with replicate and join as shown in Figure 20 to form a

composed model. Consequently, while the wheel is modeled four times in the SPN model

as FRWheel (Front Right Wheel), FLWheel (Front Left Wheel), RRWheel (Rear Right

Wheel) and RLWheel (Rear Left Wheel); in the SAN model, the wheel subnet is

conveniently replicated four times.

Besides simplicity of specification, composed SAN models also offer advantages in

the area of model solution. For analytic solution, composed models exploit the

symmetries in the model to reduce the number of reachable states [28].

4.3.4 Definition of Reliability Reward Rates

The reliability reward rates have been defined differently for the SPN models and the

SAN models (Figure 18 and Figure 25 respectively). For the SPN models the reliability

measure is defined only in terms of when the system is “up” or “down”, i.e. reliability is

defined in terms of when the system (or sub-system) is in operation (up or ‘1’) or has

halted (down or ‘0’). The SAN formalism facilitates the notion of degraded operation,

and defining the output measures in their terms. Hence, for the SAN models, the

reliability measure takes into consideration the degraded modes of operation of the

system as well (denoted by the presence of tokens in the degraded, LOS and LOV places).

4.3.5 Compactness and Clarity

Consider the SPN and SAN models illustrated in Appendix A and B respectively.

Clearly SANs, with their more expressive graphical primitives, allow a more compact

65

representation of the system. However, a lot of detail is hidden inside the operation of the

primitives, which might not be obvious at first glance.

The results from reliability analysis of the developed models are presented in Chapter

5 and how the results from the SPN models and the SAN models compare to each other is

discussed in Section 5.3.

66

CHAPTER FIVE

RESULTS AND DISCUSSION

`What do you mean by that?' said the Caterpillar sternly. `Explain
yourself!'

- Alice in Wonderland

The results from the analyses of the models discussed in Chapter 4 are presented here.

Section 5.1 presents and discusses the results from the reliability analysis of the SPN

models and Section 5.2 presents and discusses the results from the reliability analysis of

the SAN models. The results from these two formalisms are then compared and analyzed

in Section 5.3.

5.1 Reliability Analysis of SPN models

The reliability of the system at time t is computed as the expected instantaneous

reward rate at time t. To determine the reliability of the system, transient analysis of the

developed SPN models was carried out and the reliability measured between 0 and 50K

hours. The time duration was deliberately conservative, even though the average life span

of a passenger vehicle ranges from 3000 – 9000 hours, the reliability measures were

determined for up to 50K hours.

5.1.1 Transient Analysis using SPNP

The transient analysis of the developed SPN models was carried out using the

Stochastic Petri Net Package (SPNP) version 6 on a Sun Ultra 10 (400 MHz) with

500MB memory. The number of states that can be handled by the solvers available in the

package is only limited by the size of memory available. The package allows options that

67

specify the way of solving the Stochastic Reward Net (SRN) to be specified in the void

options(void) function in the input CSPL file. SPNP can perform transient and sensitivity

analysis only by reducing the SRN to a CTMC (Continuous-Time Markov Chain). This is

achieved by setting the IOP_MC option to VAL_CTMC. Further, the transient-state

solution method (IOP_TSMETHOD) for the CTMC was specified as VAL_TSUNIF

which stands for Transient Solution using Standard Uniformization7 [24].

The transient analysis of the developed SPN models resulted in 164,209 tangible

markings, of which 91,880 were absorbing. (A marking is a bag representing the

configuration of tokens in the places of the Petri net. It is also called the state of the Petri

net. A marking is tangible if it enables no immediate transition; a marking that does not

enable any transition is absorbing.) There were 36 immediate transitions. (See Appendix

A.1 for details). The approximate running time of the solver on the models was 144-168

hours.

5.1.2 Results for Models Representing Coincident Failures and Severity of Failure

The reliability measure was predicted at 169 different points along the range of 0-50K

hours. The interval between the points did not remain constant along the entire time

range; instead the time range was divided into four segments. Each of these segments had

a different time interval. The expected values of reliability at various time instances were

plotted as a function of time.

In Figure 29, the Y-axis gives the measure of interest - the reliability; while the time

range (0 to 50K hours) is shown along the X-axis. As expected, the reliability steadily

7 Uniformization is based on the randomization of the CTMC and exploits the sparse structure of the
matrix. In this method, the CTMC is reduced to a DTMC subordinated to a Poisson process. The time-
dependent probabilities are given as an infinite series. This method can easily handle large state spaces and
is numerically stable but not efficient for stiff problems.

68

decreases with time. The dashed line indicates the reliability function when coincident

failures are modeled and the complete line (completely overlapped) indicates the

reliability function when coincident failures are not modeled. In other words there is no

visible difference between the two curves. The box highlights the range of the average

lifetime period (3K-9K hours) of the vehicle.

Figure 30 subtly displays the difference between the two reliability functions. This

figure highlights the difference between the reliability functions (reliability for the model

without coincident failures minus the reliability for the model with coincident failures at

each time point) plotted with respect to time, and hence the contribution of modeling

coincident failures in the analysis of the system. If there were no difference, the line

would not slope upwards but would be at the X-axis. The reliability functions diverge

starting around 350 hours of operation, and the difference becomes discernible after

0.75

0.8

0.85

0.9

0.95

1

1.05

0
30

0
60

0
90

0
16

00
28

00
40

00
52

00
64

00
76

00
88

00

10
00

0

11
50

0

13
30

0

15
10

0

16
90

0

18
70

0

20
50

0

22
30

0

24
10

0

26
00

0

29
00

0

32
00

0

35
00

0

38
00

0

41
00

0

44
00

0

47
00

0

50
00

0

Time (in hrs)

R
el

ia
b

ili
ty

Without coincident failures

With Coincident Failures

MTTF (w/o) = 785277.6 hrs.
MTTF (with)= 784856.4 hrs.

Range of the average lifetime of vehicle

Figure 29: SPN Reliability Results for Severity and Coincident Failures

69

around 13K hours of operation (after the expected life time period a the vehicle). The

difference continues to increase with time.

5.1.2.1 Interpretation of Results

For the limited8 number of coincident failures that were modeled, it is clear that the

Mean Time to Failure (MTTF) for the model with coincident failures (784,856 hrs) is

approximately 421 hours less than the model without coincident failures (785,277 hrs). It

is interesting to note that the difference in Mean Time To Failure between the two cases

becomes marked only beyond the average lifetime of the vehicle. For the limited number

of coincident failures that have been modeled, the difference of 421 hours in the two

cases is considered well within the confidence interval. However, it is evident that

representing severity and coincident failures in the model contributes to predicting the

8 One may speculate that there is some kind of relationship (perhaps linear) between the number of
dependencies modeled and the difference observed in the graphs and the MTTF values.

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00018

0
30

0
60

0
90

0
16

00
28

00
40

00
52

00
64

00
76

00
88

00

10
00

0

11
50

0

13
30

0

15
10

0

16
90

0

18
70

0

20
50

0

22
30

0

24
10

0

26
00

0

29
00

0

32
00

0

35
00

0

38
00

0

41
00

0

44
00

0

47
00

0

50
00

0

Time (in hours)

D
if

fe
re

n
ce

Figure 30: Difference in Reliability Functions

70

system reliability that may be closer to how the real system will behave under the

assumptions that have been made (Section 4.1.1.1). This may be borne out by increasing

the faithfulness of the model, which in turn may make it more intractable.

5.1.3 Results for Models Representing Usage-Profiles

In Figure 31, the Y-axis gives the measure of interest - the reliability; while the time

range (0 to 50K hours) is shown along the X-axis. As expected, the reliability steadily

decreases with time. The complete (upper) line indicates the reliability function when the

usage of the system is infrequent and the dashed (lower) line indicates the reliability

function when the usage of the system is frequent.

5.1.3.1 Interpretation of Results

Interestingly, the reliability of the system with heavy usage decreases alarmingly

within the first 1K hours of operation, while the reliability of the system with moderate

0

0.2

0.4

0.6

0.8

1

1.2

0
30

0
60

0
90

0
16

00
28

00
40

00
52

00
64

00
76

00
88

00

10
00

0

11
50

0

13
30

0

15
10

0

16
90

0

18
70

0

20
50

0

22
30

0

24
10

0

26
00

0

29
00

0

32
00

0

35
00

0

38
00

0

41
00

0

44
00

0

47
00

0

50
00

0

Time (in hours)

R
el

ia
b

ili
ty

Low Usage

High Usage

MTTF (Low Usage) = 775111.7 hrs.
MTTF (High Usage) = 771022.9 hrs.

Range of the average lifetime of vehicle

Figure 31: SPN Reliability Results for Usage Profiles

71

usage decreases perceptibly only after 2.5K hours of operation and then steadily

afterwards. Also, the mean time to failure (MTTF) for the high usage case is

approximately 771,023 hours as opposed to 775,112 hours for the low usage case, a

difference roughly to within an hour of 4,089 hours.

While the two curves are markedly different at the outset, they converge to around the

same point at 50K hours. This can be explained by arguing that the plot depends on the

way the reliability reward measure has been defined (Figure 18), and it puts a limit to

how low the reliability can get in a given time interval. Since the number of absorbing

states is the same in both cases (because the only difference in the two models is the

value of mu), the range of reliability value is the same, yet the rate at which the reward is

accumulated (how soon the system degraded/fails) depends on mu and hence is different.

It is significant to note that the reliability of the system converges to approximately 0.74

at 50K hours (well beyond the lifetime of the vehicle) irrespective of the type of usage.

Naturally, concerned about the reliability within the average lifetime of the vehicle, it is

clear that aggressive use of the system, causes the reliability to drop much more rapidly

than when the system is used conservatively.

Also, consider that some components are used only for a few minutes during the

entire lifetime of the vehicle (10-15 years) while other components like the tubing are

used all of the time during that period. Hence, the usage of different components is

different even within a given usage profile and will affect the actual reliability. What is

important is the approach we used and the results (considering the different underlying

assumptions - Section 4.1.2.1) clearly indicate that it is important to consider the usage

profiles while determining the reliability for any given system. Further refinement and

72

fidelity is a natural extension (see Section 4.1.4 for the discussion on the extensibility of

the model) of the overall approach used here.

5.2 Reliability Analysis of SAN models

The reliability of the system at time t is computed as the expected instantaneous

reward rate at time t. To determine the reliability of the ABS, transient analysis of the

developed SAN models was carried out using the instant-of-time transient solver

available in the UltraSAN tool. The reliability was measured between 0 and 50K hours.

The time duration was deliberately conservative, even though the average life span of a

passenger vehicle ranges from 3000 – 9000 hours, the reliability measures were

determined for up to 50K hours (as previously mentioned).

5.2.1 Transient Analysis using UltraSAN

The transient analysis of the developed SAN models was carried out using UltraSAN

version 3.5 on a Sun Ultra 10 (400 MHz) with 500MB memory. All the analytic solvers

in UltraSAN require the explicit generation of the state space and the state transitions of

the stochastic process using the state space generator (using Reduced Base Model

Generation). The transient solver (trs) solves for instant of time variables with t < ∞,

using randomization (also known as uniformization). The accumulated reward solver

(ars) was used to determine the reward accumulated over 50K hours. This measure, when

extrapolated for time going to infinity, represents the mean time to failure of the system.

Uniformization is based on the idea of subordinating a Markov chain to a Poisson

process (as stated before). It is computationally efficient, preserves matrix sparsity, and

solves to user specified tolerances. The developed SAN models were solved at a

tolerance of 1e-09, and resulted in the generation of 859,958 states. The approximate

73

running time of the solver on the models was 120-144 hours. The results are discussed in

detail here.

5.2.2 Results for Models Representing Coincident Failures and Severity of Failure

The reliability measure was predicted at 11 different points along the range of 0-50K

hours. The interval between the points did not remain constant along the entire time range

and therefore the X-axis is not linear and should be taken into account when viewing the

results graphs. The expected values of reliability at various time instances were plotted as

a function of time.

In Figure 32, the Y-axis gives the measure of interest - the reliability; while the time

range (0 to 50K hours) is shown along the X-axis. As expected, the reliability steadily

decreases with time. The dashed line indicates the reliability function when coincident

failures are modeled and the complete line indicates the reliability function when

0

0.2

0.4

0.6

0.8

1

1.2

10 50 100 500 1000 5000 10000 20000 30000 40000 50000

Time (in hours)

R
el

ia
b

ili
ty

Without Coincident Failures

With Coincident Failures

Range of the average lifetime of vehicle

Figure 32: SAN Reliability Results for Severity and Coincident Failures

74

coincident failures are not modeled.

5.2.2.1 Interpretation of Results

The reliability functions diverge perceptibly after around 1K hours of operation, and

the difference continues to increase with time. At 50K hours, the reliability has dropped

down to 0.21 when coincident failures are modeled, and down to 0.30 when coincident

failures are not modeled, a difference of 0.09 in reliability in the two cases within 50K

hours.

Considering the time period approximately around the expected lifetime of the

vehicle (3,000-9,000 hours), the difference in reliability after 5K hours of operation is

approximately 0.0253 and after 10K hours is 0.0493. This clearly indicates that

representing severity and coincident failures in the model contributes to predicting the

system reliability that may be closer to how the real system will behave considering the

underlying different assumptions.

The Mean Time to Failure calculated at 50K hours in the case where coincident

failures are not modeled is 29,167 hours, and in the case where coincident failures are

modeled is 25,409 hours, a difference of 3,758 hours. It is important to realize that these

results are only for the limited number of coincident failures and levels of severity that

have been modeled. Clearly, modeling severity and coincident failures have a significant

contribution in determining the system reliability at any given instant of time.

5.2.3 Results for Models Representing Usage-Profiles

In Figure 33, the Y-axis gives the measure of interest - the reliability; while the time

range (0 to 50K hours) is shown along the X-axis. As expected, the reliability steadily

decreases with time. The complete (upper) line indicates the reliability function when the

75

usage of the system is infrequent and the dashed (lower) line indicates the reliability

function when the usage of the system is frequent.

5.2.3.1 Interpretation of Results

Interestingly, the reliability of the system with heavy usage starts decreasing

alarmingly after the first 100 hours of operation, while the reliability of the system with

not so heavy usage decreases only perceptibly after 100 hours of operation and then

steadily afterwards. Considering the time period within the expected lifetime of the

vehicle (3,000-9,000 hours), the reliability for the high-usage profile drops from around

0.55 down to approximately 0.05. For the same duration, the reliability for the low usage

drops from 0.9 to only 0.5, a difference of approximately 0.45 after 10K hours of

operation.

Also, the mean time to failure (MTTF) calculated at 50K hours for the high usage

case is approximately 1,687 hours as opposed to 12,262 hours for the low usage case, a

0

0.2

0.4

0.6

0.8

1

1.2

0 10 50 100 500 1000 5000 10000 20000 30000 40000 50000
Time (in hours)

R
el

ia
b

ili
ty

Low Usage

High Usage

Range of the average lifetime of vehicle

Figure 33: SAN Reliability Results for Usage-Profiles

76

difference of 10,575 hours. It is significant to note that the reliability of the system drops

to 0 at 50K hours (well beyond the lifetime of the vehicle) irrespective of the type of

usage. However, it is clear that aggressive use of the system, causes the reliability to drop

much more rapidly than when the system is used conservatively.

5.3 Comparison of Results from Analysis using the Two Different Stochastic Tools

A model is always a compromise between faithfulness and simplicity. Figure 34

shows the relation between the realism (or

faithfulness) and simplicity (tractability) of a

model [12]. How closely a model mirrors its

originator or the vision of the system is in

direct conflict with how easily and

efficiently the model can be analyzed (i.e.,

solved with respect to its predicted

behavior). The models described in Chapter

4 were built incrementally to achieve the

best balance between faithfulness to the real

system and keeping the model tractable at

the same time. As a result models of higher fidelity (more realistic) were created

progressively.

A survey of performance/performability analysis studies over the past five years

brought up one paper that validated results obtained against those obtained by

experimental techniques [55], another that used mathematical reasoning for arguing

correctness of results [56], and two that used results from two different methods to

Figure 34: Model Faithfulness vs. Simplicity

77

compare them and hence prove their correctness - [57] compared results from analytic

and simulation modeling, while [58] compared results from software implemented fault

injection and simulated fault injection on a high-speed network. Since, it is beyond the

scope (and the means9) of this research to validate the results from the analytic

experiments against real data, two different stochastic formalisms have been used to carry

out the reliability analysis. The results, from the analyses of each of the (SPN and SAN)

models developed, using the SPNP and the UltraSAN tools respectively, are discussed

and compared in this section.

5.3.1 Comparing Results for Models Representing Severity and Coincident Failures

The results for the SPN models representing severity and coincident failures are

shown in Figure 29 and for the SAN models representing severity and coincident failures

9 We were lucky to get the reliability data of the components, which is confidential, and had to falsify the
data to publish it as part of this research.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 50 100 500 1000 5000 10000 20000 30000 40000 50000
Time (in hours)

R
el

ia
b

ili
ty

SAN Results without coincident failures
SAN Results with coincident failures
SPN Results with coincident failures
SPN Results without coincident failures

Range of the average lifetime of vehicle

Figure 35: Comparison of SPN and SAN Results for the Models
Representing Severity and Coincident Failures

78

are shown in Figure 32. The curves for both these results have now been plotted in one

graph and are shown in Figure 35. The curves for the two different SPN models for

coincident failures (the model representing severity and coincident failures and the model

not representing them) are completely overlapped, the distinction between the results for

the SAN models representing severity and coincident failures and the SAN models not

representing them is clearly visible. The box highlights the average lifetime period of a

vehicle.

The difference in the range of actual reliability values between the SPN and SAN

models may be attributed to the different ways in which the reliability reward is defined.

The SPN reward rate was defined as a single set of discrete 0/1 values (Section 4.1.3), the

SAN reward rate function models a range between 0 and 1 (a function of the number of

tokens in the degraded, LOS and LOV places - Section 4.2.3). Therefore, the different

rewards accumulate at different rates, and this explains the disparity in the reliability

values at any given point in time in the two cases.

5.3.2 Comparing Results for Models Representing Usage-Profiles

The results for the SPN models representing usage-profiles are shown in Figure 31

and for the SAN models representing usage-profiles are shown in Figure 33. In Figure 36

all the results are provided in one graph, making it is easier to compare them. Again, the

difference in the range of actual reliability values between the SPN and SAN models may

be attributed to the way in which the reliability reward is defined in either case.

5.3.3 Comparing Results to Compensate for Lack of Validation

The above discussion focuses on comparing the results obtained from analyzing both

types of models. It should be noticed that results from both models agree on the fact that

79

failure severity, coincident failures and usage-profiles contribute significantly to

predicting system reliability. The reward rates are defined differently for the two

formalisms (Figure 18 and Figure 25), consequently the results don’t agree on the exact

values of reliability.

Since it is best not to trust results from a single modeling formalism (including the

built-in solvers), two different formalisms were employed to predict the reliability for the

given system (ABS). If the results had agreed on all accounts, it would have corroborated

the modeling strategy. Nevertheless, more information has been gathered by using two

different formalisms.

Which of these results is more realistic? This question cannot be easily answered

because there exists no data that takes into account the contribution of failure severity,

0

0.2

0.4

0.6

0.8

1

1.2

0 10 50 100 500 1000 5000 10000 20000 30000 40000 50000
Time (in hours)

R
el

ia
b

ili
ty

SPN Modeling Low Usage
SPN Modeling High Usage
SAN Modeling Low Usage
SAN Modeling High Usage

Range of the average lifetime of vehicle

Figure 36: Comparison of SPN and SAN Results for the Models
Representing Usage-Profiles

80

coincident failures and/or usage-profiles. If such data did exist one could be able to

conclude which model yielded more realistic results. Complete validation of these results

would require numerous different experiments on vehicles, subject to different usage-

profiles and tests to identify and gather data regarding correlated failures and levels of

severity. Clearly, this is beyond the scope (and the means) of this research.

However, considering the expressive power of SANs and the way the reliability

reward measure has been defined (taking into consideration degraded performance), the

SAN models seem to be intuitively more realistic (of course, under the assumptions

which are the same for both of the stochastic formalisms). The results from the SAN

models show a clear divergence in system reliability where coincident failures have and

have not been modeled, as well as in the two different usage-profiles. Considering this,

the importance of modeling severity, coincident failures and usage-profiles for a more

realistic representation of the system has been reasonably justified.

Ideally, one would like to have data collected that was comprehensive enough to

account for the contribution of coincident failures and usage information. Given the data

that was available, the next best thing to do was to compare results from the two different

modeling formalisms. This gap between predicted and actual results exists in many

scientific fields and this approach (of comparing results) is used commonly by

researchers. Thus, two different formalisms have been used to counter balance the

absence of a feasible validation procedure, and their results have been compared and

discussed.

81

CHAPTER SIX

CONCLUSIONS

`Oh, I've had such a curious dream!' said Alice, and she told her sister, as
well as she could remember them, all these strange Adventures of hers
that you have just been reading about.

- Alice in Wonderland

6.1 Summary

The objective of this research was to develop a generic (including extensible and

realistic) framework for analyzing an embedded vehicle system focusing on severity of

failures, coincident failures and usage-profiles. This objective was met by modeling these

characteristics in the special case of an Anti-lock Braking System (ABS) of a passenger

vehicle. Modeling challenges of state explosion and stiffness were met and overcome.

The basis of creating the models was an industrial-strength system characterized by

empirical data. The modeling strategy was explained and the extensibility of the models

developed has also been discussed. Two different stochastic formalisms – Stochastic

Petri Nets and Stochastic Activity Networks, were used to analyze the developed models

for reliability measures. The results from these two modeling formalisms were compared

and discussed, in the absence of another validation procedure.

6.2 Conclusion

The characteristics of failure severity, coincident failures and usage-profiles were

successfully incorporated into the model developed for the ABS of a passenger vehicle.

The models evolved over successive iterations of modeling, increasingly refined in their

ability to represent different factors that affect the measure of interest (i.e. system

82

reliability). This resulted in generating a potentially more realistic model (with real data

being used to model failure rates). Consequently, the weaknesses in the available data in

terms of providing adequate basis to model the extra-functional characteristics under

study were identified. This study also established the degree of complexity and the level

of abstraction that can be modeled and solved utilizing the available resources.

Comparison of the models developed using the two separate modeling formalisms,

SPNs and SANs, indicate that there is no clear winner between the two formalisms. Even

though SANs provide more expressive power and compactness to the models developed,

the details that are clearly visible in the SPN models are hidden in the SAN models,

making them more cryptic.

The results obtained from the analyses showed that the reliability measures were

different when the extra-functional characteristics of severity and coincident failures were

incorporated. The difference in reliability measures for markedly different system

workloads was also identified. Since the model is an abstraction of a real world problem,

predictions based on the model should be validated against actual measurements

observed from the real phenomena.

Suitable validation procedures (discussed in Section 6.3.4) can provide helpful

feedback for refining the model and making it even more realistic. Analysis of such a

realistic model provides basis for verification that the requirements for system safety (in

terms of required safety functions10 and safety integrity11) have been achieved. Using two

different stochastic formalisms for analysis and comparing the results did not compensate

10 Safety functions are the required functions necessary to achieve or maintain a safe state for the
equipment under control.
11 Safety integrity is defined as the probability of a safety-related system satisfactorily performing the
required safety functions under all stated conditions within a stated period of time.

83

for the lack of validation procedures for analysis results. Yet, the results justified the

modeling strategy adopted and highlighted the importance of modeling severity,

coincident failures and usage-profiles while examining system reliability.

The goal of developing an approach that is generic and extensible for this application

domain was achieved by discussing the extensibility of the developed models to

incorporate greater complexity and other relevant features in the given context (e.g.,

severity of failure, and the effects of different usage profiles). Further extension to the

developed models to include other closely related sub-systems is the topic of future work

(Section 6.3.2).

The contribution of this research to the automotive industry is substantial as it offers a

greater insight into the strategy for developing realistic models. The information from the

results is also useful in making design decisions. Results provide greater insight to

manufacturers about “weak links” in the system, and increased understanding of which

components need to be highly reliable to potentially increase overall system reliability.

This research has successfully established a framework for investigating subsystem

reliability. Strategies for modeling severity, coincident failures and usage-profiles were

explored, and the models with an adequate level of abstraction and a degree of

complexity that were feasible to solve have been presented and discussed. This study can

be the basis of numerous other studies, building up on the framework provided and

investigating other areas of interest, as presented in the next section.

6.3 Future Work

This section highlights the scope of future work which may be conducted on the basis

84

of the work presented here.

6.3.1 Sensitivity analysis

Sensitivity analysis is the analysis of the effect of small variations in system

parameters on the output measures and can be studied by computing the derivatives of the

output measures with respect to the parameter. If a small change in a parameter results in

relatively large changes in the outcomes, the outcomes are said to be sensitive to that

parameter. System optimization is an important application of sensitivity analysis.

Both the SPN and SAN models lend themselves to sensitivity analysis at various

levels: (1) changes in the structure, (2) arbitrary changes in the initial marking, (3)

changes in the initial number of tokens in a place, and (4) changes in a parameter

involved in the definition of the rate or probability of one or more transitions. While (1),

(2) and (3) require the reevaluation of the entire model, since they modify the underlying

reachability graphs, in (4) the structure of the underlying reachability graphs is unaffected

[24]. Both SPNP and UltraSAN allow the computation of the sensitivities of various

parameters.

The models developed so far can be used to carry out sensitivity analysis of the

system under study/development to identify the components that are most likely to fail,

thereby making the system susceptible to critical failures. Armed with such knowledge,

system and software architects can make more informed decisions as to the inherently

reliable and safe choices and/or make economic/cost tradeoffs.

6.3.2 Model the Entire System

The Anti-lock Braking system is a small part of the DDR (Dynamic Driving

Regulation) system which consists of subsystems like the Anti-lock Braking System

85

(ABS), the Electronic Steering Assistance (ESA), and the Automatic Slip Reduction

(ASR). The models discussed so far can be considered to be details inside the Anti-lock

Braking System box in Figure 37. Similar models can be developed for the ESA and the

ASR sub-systems as well.

To achieve a more

realistic model, this work

can be extended to

incorporate the other

closely related sub-

systems and analyze the

composed model for

reliability/availability and sensitivity.

However, all three sub-systems work closely and share common components. To

extend the framework established for modeling the ABS sub-system for dealing with the

composition of multiple sub-systems, a new strategy would need to be developed because

the model already exploits the maximum degree of complexity that is feasible to solve.

The sub-system models can be modeled and analyzed separately and the results combined

to get a picture of the overall system reliability. Further, the components that are shared

by the different sub-systems can be modeled taking advantage of symmetry in the system

and the modeling formalism. Also, different parts of the system can be modeled at

different levels of abstraction to focus on a specific point in the system.

6.3.3 Discrete Event Simulation

The DDR system is a very complex system, and a model capturing all its essential

Anti-lock Braking
System

Electronic
Steering

Assistance

Automatic Slip
Reduction

start

Dynamic Driving Regulation System

Common
Components

(e.g. controller)

Figure 37: Modeling the Entire System

86

features/characteristics would itself be very complex, precluding any possibility of an

analytical solution. In this case, the model must be studied by means of simulation i.e.,

numerically exercising the model for the inputs in question to determine how they affect

the output measures of performance [13]. Discrete Event Simulation concerns the

modeling of a system as it evolves over time by a representation in which the state

variables change instantaneously at separate points in time.

UltraSAN supports simulation of the SAN model, and makes use of the structure of

the SAN and the choice of performability variables to speed up the solution of the

system. A choice between a transient solver and a steady-state solver is available [29].

Both simulation solvers provide estimates of the accuracy of the result, using an iterative

method for estimating the confidence interval at a user specified interval.

The UltraSAN tool is now being superceded by the Möbius Tool [59]. It provides the

capabilities and features available in previous versions of UltraSAN, while at the same

time supporting an internal framework design that is more advanced than that of its

predecessor. Möbius has the ability to import the existing models from the UltraSAN

software, and provides the ability to view intermediate results as a simulation executes.

The Discrete Event Simulator offered by Möbius can be used for simulating the

composed model developed, instead of using UltraSAN.

6.3.4 Validation of Results

Modeling and experiments on the real system (measurements) are two totally

different but complementary approaches in performance evaluation methodology as was

shown in Figure 1. The results achieved from analysis of mathematical methods should

be compared with the results from analysis of measured values. Comparison of these

87

values gives essential feedback to the step where the system parameters are characterized

in the model being developed, and this process incrementally results in a more faithful

model.

The automotive industry has several experimental studies in progress that record the

effect of various system components and their failure rates on the vehicle’s safety and

reliability properties. The technical strategy for validation includes the measures

(techniques) and procedures that would be used for confirming that each safety function

conforms to the specified system safety requirements [60]. One would like to have data

collected that was comprehensive enough to account for the contribution of coincident

failures and usage information, such as data about (1) the effect of degraded

operation/loss of stability on component failure rate, (2) the correlation of failures

between components, (3) the effect of demand/usage on failure rates and, (4) quantization

of workload durations. Such data can provide sufficient evidence to corroborate and/or

validate the results obtained from these analyses or the basis for evolution of the

developed models to more realistic models characterized by measurements from real

experiments.

88

BIBLIOGRAPHY

`Begin at the beginning,' the King said gravely, `and go on till you come to
the end: then stop.'

- Alice in Wonderland

1. Vouk, M.A. Software Reliability Engineering. in 2000 Annual RELIABILITY and

MAINTAINABILITY Symposium. 2000. Los Angeles, CA: IEEE Computer

Society.

2. Jerath, K. and F.T. Sheldon. Reliability Analysis of an Anti-lock Braking System

using Stochastic Petri Nets. in PMCCS5. 2001. Erlangen, Germany: Springer

Verlag. p. 56-60.

3. Sheldon, F.T., S. Greiner, and M. Benzinger. Specification, Safety and Reliability

Analysis Using Stochastic Petri Net Models. in Tenth International Workshop on

Software Specification and Design. 2000. San Diego, California: IEEE Computer

Society. p. 123-132.

4. Siewiorek, D.P. and R.S. Swarz, Reliable Computer Systems: Design and

Evaluation. 2 ed. 1992: Digital Press. 908.

5. Balbo, G., Professor, Universita di Torino, Italy. Personal Communication at

EEF-Summerschool Formal Methods and Performance Analysis, Netherlands,

July 2000.

6. Musa, J.D., Operational Profiles in Software-Reliability Engineering. IEEE

Software, 1993. 10(2): p. 14-32.

7. Meyer, J., Professor, University of Michigan, Ann Arbor, MI. Personal

Communication at PMCCS5, Erlangen, Germany, September 2001.

89

8. Trivedi, K., Probability and Statistics with Reliability, Queuing and Computer

Science Applications. 2 ed. 2001, New York: John Wiley & Sons. 848.

9. Balbo, G. Introduction to Stochastic Petri Nets. in FMPA. 2000. The Netherlands:

Springer-Verlag. LNCS 2090. p. 84-155.

10. Meyer, J.F., A. Movaghar, and W.H. Sanders. Stochastic Activity Networks:

Structure, Behavior and Application. in Proc. of International Workshop on

Timed Petri Nets. 1985. Turin, Italy: IEEE Computer Society. p. 106-115.

11. Herzog, U. Formal Methods for Performance Evaluation. in FMPA. 2000. The

Netherlands: Springer-Verlag. LNCS 2090. p. 1-37.

12. Sheldon, F.T. and S. Greiner, Composing, analyzing and validating software

models to assess the performability of competing design candidates. Annals of

Software Engineering, 1999. 8: p. 239-287.

13. Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis. 3 ed. 2000, New

York: McGraw Hill. 760.

14. Popstojanova, K.G. and K. Trivedi. Stochastic Modeling Formalisms for

Dependability, Performance and Performability. in Performance Evaluation:

Origins and Directions. 2000: Springer-Verlag. LNCS 1769. p. 403-422.

15. Meyer, J.F., Performability: a retrospective and some pointers to the future.

Performance Evaluation, 1992. 14: p. 139-156.

16. Haverkort, B.R. Markovian Models for Performance and Dependability

Evaluation. in FMPA. 2000. The Netherlands: Springer Verlag. LNCS 2090. p.

38-83.

17. Meyer, J. Unified performance-reliability evaluation. in Proc. 1984 America

90

Control Conference. 1984. San Diego, CA. p. 1771-1778.

18. Meyer, J.F. and W.H. Sanders, Specification and Construction of Performability

Models, in Performability Modeling: Techniques and Tools, B.R. Haverkort, et

al., Editors. 2001, Wiley. p. 179-222.

19. Muppala, J.K., G. Ciardo, and K. Trivedi, Stochastic Reward Nets for Reliability

Prediction. Communications in Reliability, Maintainability and Serviceability,

1994. 1(2): p. 9-20.

20. Littlewood, B. and L. Strigini. Software reliability and dependability: a roadmap.

in Proc. of International Conference on Software Engineering. 2000. Limerick,

Ireland: ACM Press. 22. p. 175-188.

21. Murata, T., Petri Nets: Properties, analysis and applications. Proceedings of the

IEEE, 1989. 77(4): p. 541-580.

22. Dugan, J.B. and G. Ciardo, Stochastic Petri Net Analysis of a Replicated File

System. IEEE Transactions on Software Engineering, 1989. 15(4): p. 394-401.

23. Trivedi, K., SPNP User's Manual Version 6.0. 1999, Duke University: Durham,

NC, USA.

24. Ciardo, G., J.K. Muppala, and K. Trivedi. SPNP: Stochastic Petri Net Package. in

Proc. of Intl. Workshop on Petri Nets and Performance Models. 1989. Kyoto,

Japan: IEEE Computer Society Press. p. 142-151.

25. Trivedi, K. and M. Malhotra. Reliability and Performability Techniques and

Tools: A Survey. in Proc. 7th ITG/GI Conference on Measurement, Modeling and

Evaluation of Computer and Communication Systems. 1993. Aachen University

of Technology. p. 27-48.

91

26. Sanders, W.H. and J.F. Meyer. Stochastic Activity Networks: Formal Definitions

and Concepts. in FMPA. 2000. Nijmegen, the Netherlands: Springer Verlag.

LNCS 2090. p. 315-343.

27. Movaghar, A. and J. Meyer. Performability Modeling with Stochastic Activity

Networks. in Proc. of the IEEE Real-Time Systems Symposium. 1984. Austin,

Texas: IEEE Computer Society. p. 215-224.

28. Sanders, W.H., UltraSAN User's Manual Version 3.0. 1994-95, University of

Illinois at Urbana-Champaign: Urbana, IL.

29. Couvillion, J., et al., Performability Modeling with UltraSAN. IEEE Software,

1991. 8(5): p. 69-80.

30. Sanders, W.H. and J. Meyer, Reduced Base Model Construction Methods for

Stochastic Activity Networks. IEEE Journal on Selected Areas in

Communications, 1991. 9(1): p. 25-36.

31. IEEE, IEEE Standard Glossary of Software Engineering Terminology. 1990:

IEEE Standard 610.12-1990.

32. Gay, F.A. Performance Evaluation for Gracefully Degrading Systems. in Proc. of

9th Annual Int'l Symposium on Fault-Tolerant Computing (FTCS-9). 1979.

Madison, Wisconsin: IEEE Computer Society. p. 51-58.

33. Hecht Myron, Tang Dong, and H. Hecht. Quantitative Reliability and Availability

Assessment for Critical Systems Including Software. in Proc. of the 12th Annual

Conference on Computer Assurance. 1997. Gaitherburg, Maryland.

34. Sahner, R.A. and K. Trivedi. A hierarchical, combinatorial-Markov model of

solving complex reliability models. in Proc. of ACM/IEEE Fall Joint Computer

92

Conference. 1986. Dallas, Texas: IEEE Computer Society.

35. Kanoun, K. and M. Borrel. Dependability of Fault-Tolerant Systems - Explicit

Modeling of the Interactions Between Hardware and Software Components. in

Proc. of 2nd Int'l Computer Performance and Dependability Symposium (IPDS).

1996. Urbana-Champaign: IEEE Computer Society. p. 252-261.

36. Dugan, J.B. Experimental analysis of models for correlation in multiversion

software. in Proc. of 5th Int'l Symposium on Software Reliability Engineering.

1994. Los Alamitos, CA: IEEE Computer Society. p. 36-44.

37. Eckhardt, D.E. and L.D. Lee, Theoretical Basis for the Analysis of Multiversion

Software Subject to Coincident Errors. IEEE Transactions on Software

Engineering, 1985. 11(12): p. 1511-1517.

38. Littlewood, B. and D.R. Miller, Conceptual Modeling of Coincident Failures in

Multiversion Software. IEEE Transactions on Software Engineering, 1989.

15(12): p. 1596-1614.

39. Nicola, V.F. and A. Goyal, Modeling of Correlated Failures and Community

Error Recovery in Multiversion Software. IEEE Transactions on Software

Engineering, 1990. 16(3): p. 350-359.

40. Arlat, J., K. Kanoun, and J.-C. Laprie, Dependability Modeling and Evaluation of

Software Fault-Tolerant Systems. IEEE Transactions on Computers, 1990. 39(4):

p. 504-513.

41. Dong, T. and R.K. Iyer, Analysis and Modeling of Correlated Failures in

Multicomputer Systems. IEEE Transactions on Computers, 1992. 41(5): p. 567-

577.

93

42. Butler, R.W. and G.B. Finelli. The infeasibility of experimental quantification of

life-critical software reliability. in Proc. of the conference on Software for critical

systems. 1991. New Orleans, Louisiana: ACM Press. p. 66-76.

43. Hsueh, M.C., R.K. Iyer, and K. Trivedi, Performability modeling based on real

data: A case study. IEEE Transactions on Computers, 1988. 37(4): p. 478-484.

44. Castillo, X. and D.P. Siewiorek. Workload, Performance and Reliability of

Digital Computing Systems. in Proc. of IEEE 11th Int'l Symposium on Fault

Tolerant Computing. 1981. Portland, ME. p. 84-89.

45. Meyer, J. and L. Wei. Analysis of Workload Influence on Dependability. in Proc.

of IEEE 18th Int'l Symposium on Fault Tolerant Computing. 1988. Tokyo, Japan.

p. 84-89.

46. Malhis, L.M., W.H. Sanders, and R.D. Schlichting. Numerical Evaluation of a

Group-Oriented Multicast Protocol using Stochastic Activity Networks. in Proc.

of 6th International Workshop on Petri Nets and Performance Models. 1995.

Durham, NC: IEEE Computer Society. p. 63-72.

47. Qureshi, M.A. and W.H. Sanders. The Effect of Workload on the Performance

and Availability of Voting Algorithms. in Proc. of 3rd International Workshop on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS'95). 1995. Durham, NC: IEEE Computer Society. p. 217-224.

48. Aupperle, B.E., J. Meyer, and L. Wei. Evaluation of Fault-Tolerant Systems with

Nonhomogeneous Workloads. in Proc. of 19th International Symposium on Fault

Tolerant Computing (FTCS-19). 1989. Chicago, IL: IEEE Computer Society. p.

159-166.

94

49. Meyer, J., B. Littlewood, and D.R. Wright. Dependability of Modular Software in

a Multiuser Operational Environment. in Proc. of 6th International Symposium

on Software Reliability Engineering. 1995. Toulouse, France: IEEE Computer

Society. p. 170-179.

50. Weyuker, E.J. and A. Avritzer, A metric for predicting the performance of an

application under a growing workload. IBM Systems Journal, 2002. 41(1): p. 45-

54.

51. Kolsky, M., ABS: Understanding Anti-Lock Brakes. 1997.

http://www.abrn.com/archives/0797tech.htm.

52. Struss, P. and A. Malik. Automated Diagnosis of Car-Subsystems Based on

Qualitative Models. in Proc. of German Conference on Knowledge-Based

Systems (XPS). 1997. Bad Honnef, Germany. p. 157-166.

53. Nice, K., How Anti-Lock Brakes Work. 2001.

http://www.howstuffworks.com/anti-lock-brake.htm.

54. Bosch, R., Automotive Handbook. 4 ed, ed. U. Adler and H. Bauer. 1993: Bentley

Pubs. 852.

55. Dahlgren, F., M. Dubois, and P. Stenstrom, Performance Evaluation and Cost

Analysis of Cache Protocol Extensions for Shared-Memory Multiprocessors.

IEEE Transactions on Computers, 1998. 47(10): p. 1041-1055.

56. Meyer, J., Performability of an Admission for Connection Admission Control.

IEEE Transactions on Computers, 2001. 50(7): p. 724-733.

57. Han, G., R.H. Klenke, and J.H. Aylor, Performance Modeling of Hierarchical

Crossbar-Based Multicomputer Systems. IEEE Transactions on Computers, 2001.

95

50(9): p. 877-890.

58. Stott, D.T., et al., Dependability Analysis of a High-Speed Network Using

Software-Implemented Fault Injection and Simulated Injection. IEEE

Transactions on Computers, 1998. 47(1): p. 108-119.

59. Clark, G., et al. The Möbius Modeling Tool. in Proc. of 9th International

Workshop on Petri Nets and Performance Models. 2001. Aachen, Germany: IEEE

Computer Society. p. 241-250.

60. IEC, CEI/IEC 61508. Functional safety of electrical/electronic/programmable

electronic safety-related systems. 1998: International Electrotechnical

Commission.

APPENDIX A

STOCHASTIC PETRI NET MODELS FOR ABS

97

A.1 Modeling Severity of Failure and Coincident Failures

This section presents the CSPL code representative of the SPNs modeling severity of

failure and coincident failures, along with the actual SPNs constructed from this code.

See Section 4.1 for explanation. The CSPL code representative of the SPNs modeling

usage-profiles is not very different and is not presented here.

A.1.1 The CSPL code listing

The code presented here defines the global SPN model representing severity of

failures and coincident failures. A CSPL file must contain the following five basic

functions [23]: options(), net(), assert(), ac_init(), ac_reach() and ac_final(). The code

listing presented here has 9 major sections:

! the options() function sets the options (like specifying the type of solver to use)

which affect the way of describing and solving the model,

! the halt() function defines the halting condition of the model,

! followed by the functions that define the variable firing rate of the failure

transitions for all components,

! the net() function calls a set of functions (like place(), init(), ratefun() etc.) to

define the global SRN,

! assert() is a Boolean marking-dependent function called by SPNP during the

reachability graph construction to check the validity of each newly found

marking,

! ac_init() is called before starting the reachability graph construction,

98

! ac_reach() is called after the reachability graph construction has completed,

! reliab() and calc_reliab() are user defined functions that specify the reward

rate and the time instants when the reward is to be evaluated respectively,

! ac_final() allows the user to flexibly define outputs, calc_reliab() in this case,

using some built-in functions provided by SPNP.

/**
* SPNP File Name: ABSWithCoincident.c
* Run this file as follows:
* spnp ABSWithCoincident

***/

#include "user.h"

options()
{

iopt(IOP_PR_MARK_ORDER, VAL_CANONIC);
iopt(IOP_PR_MERG_MARK, VAL_YES);
iopt(IOP_PR_MC_ORDER, VAL_FROMTO);
iopt(IOP_MC, VAL_CTMC);
iopt(IOP_OK_ABSMARK, VAL_YES);
iopt(IOP_OK_VANLOOP, VAL_NO);
iopt(IOP_OK_TRANS_M0, VAL_YES);
iopt(IOP_ITERATIONS, 2000);
fopt(FOP_ABS_RET_M0, 0.000000);
fopt(FOP_PRECISION, 0.000001);
iopt(IOP_TSMETHOD,VAL_TSUNIF);
iopt(IOP_PR_DOT,VAL_YES);

}

int halt()
{
if((mark("loss_of_vehicle") >= 1) || (mark("loss_of_stability") >=

3) || (mark("degraded_operation") >= 5))
return 0;
else

return 1;
}

double controllerRate()
{

double controller_rate = 0.0000006;

if (mark("controllerLOS") > 0) return controller_rate * 10000;
if ((mark("controllerDegraded") > 0) || (mark("tubingDegraded") > 0))

return controller_rate * 100;
return controller_rate;

}

double tubingRate()
{

double tubing_rate = 0.0000003;

if(mark("tubingDegraded") > 0) return tubing_rate * 100;

99

else return tubing_rate;

}

double pipingRate()
{

double piping_rate = 0.0000004;

if(mark("pipingDegraded") > 0) return piping_rate * 100;
else return piping_rate;

}

double hydraulicPumpRate()
{

double hydraulicPump_rate = 0.0000136;

if (mark("controllerLOS") > 0) return hydraulicPump_rate * 10000;
if (mark("controllerDegraded") > 0) return hydraulicPump_rate * 100;
return hydraulicPump_rate ;

}

double pressureTankRate()
{

double pressureTank_rate = 0.0000004;

if (mark("controllerLOS") > 0) return pressureTank_rate * 10000;
if (mark("controllerDegraded") > 0) return pressureTank_rate * 100;
return pressureTank_rate;

}

double limitingValveRate()
{

double limitingValve_rate = 0.00000012;

if(mark("limitingValveLOS") > 0) return limitingValve_rate * 10000;
else return limitingValve_rate;

}

double toggleSwitchRate()
{

double toggleSwitch_rate = 0.0000013;

if((mark("toggleSwitchDegraded") > 0) || (mark("tubingDegraded") > 0))
return toggleSwitch_rate * 100;

else return toggleSwitch_rate;
}

double speedSensorRate()
{

double speedSensor_rate = 0.000008;

if(mark("speedSensorDegraded") > 0) return speedSensor_rate * 100;
else return speedSensor_rate;

}

double pressureSensorRate()
{

double pressureSensor_rate = 0.000006;

if(mark("pressureSensorDegraded") > 0) return pressureSensor_rate * 100;
else return pressureSensor_rate;

}

100

double rlValveRate()
{

double rlValve_rate = 0.00000006;

if((mark("rlDrainValveLOS") > 0) || (mark("rlInletValveLOS") > 0))
return rlValve_rate * 10000;

return rlValve_rate;
}

double rrValveRate()
{

double rrValve_rate = 0.00000006;

if((mark("rrDrainValveLOS") > 0) || (mark("rrInletValveLOS") > 0))
return rrValve_rate * 10000;

return rrValve_rate;
}

double flValveRate()
{

double flValve_rate = 0.00000006;

if((mark("flDrainValveLOS") > 0) || (mark("flInletValveLOS") > 0))
return flValve_rate * 10000;

return flValve_rate;
}

double frValveRate()
{

double frValve_rate = 0.00000006;

if((mark("frDrainValveLOS") > 0) || (mark("frInletValveLOS") > 0))
return frValve_rate * 10000;

return frValve_rate;
}

net()
{

place("start");
init("start",1);

place("loss_of_vehicle");
place("loss_of_stability");
place("degraded_operation");

rateval("braking",0.5);

iarc("braking","start");

place("central");
place("axle");

oarc("braking","axle");
oarc("braking","central");

/* Central Control*/

101

imm("central_op"); probval("central_op",1);

place("mbrakecyl");
place("controller");
place("tubing");
place("piping");

iarc("central_op","central");
oarc("central_op","mbrakecyl");
oarc("central_op","controller");
oarc("central_op","tubing");
oarc("central_op","piping");

/* Main Brake Cylinder*/

rateval("mbcOp",1.0);
rateval("mbcFail",0.000001);

iarc("mbcOp","mbrakecyl");
oarc("mbcOp","mbrakecyl");

iarc("mbcFail","mbrakecyl");
oarc("mbcFail","loss_of_vehicle");

/* Controller */

rateval("controllerOp",1.0);
ratefun("controllerFail",controllerRate);

iarc("controllerOp","controller");
oarc("controllerOp","controller");

place("failedController");

iarc("controllerFail","controller");
oarc("controllerFail","failedController");

imm("controllerDegradedOp"); probval("controllerDegradedOp",0.2);
imm("controllerLOSOp"); probval("controllerLOSOp",0.4);
imm("controllerLOVOp"); probval("controllerLOVOp",0.4);

place("controllerDegraded");
place("controllerLOS");

iarc("controllerDegradedOp","failedController");
oarc("controllerDegradedOp","degraded_operation");
oarc("controllerDegradedOp","controllerDegraded");
oarc("controllerDegradedOp","controller");

iarc("controllerLOSOp","failedController");
oarc("controllerLOSOp","loss_of_stability");
oarc("controllerLOSOp","controllerLOS");
oarc("controllerLOSOp","controller");

iarc("controllerLOVOp","failedController");
oarc("controllerLOVOp","loss_of_vehicle");

/* Tubing */

rateval("tubingOp",1.0);
ratefun("tubingFail",tubingRate);

iarc("tubingOp","tubing");

102

oarc("tubingOp","tubing");

place("failedTubing");

iarc("tubingFail","tubing");
oarc("tubingFail","failedTubing");

imm("tubingDegradedOp"); probval("tubingDegradedOp", 0.33);
imm("tubingLOVOp"); probval("tubingLOVOp",0.67);

place("tubingDegraded");

iarc("tubingDegradedOp","failedTubing");
oarc("tubingDegradedOp","degraded_operation");
oarc("tubingDegradedOp","tubingDegraded");
oarc("tubingDegradedOp","tubing");

iarc("tubingLOVOp","failedTubing");
oarc("tubingLOVOp","loss_of_vehicle");

/* Piping */

rateval("pipingOp",1.0);
ratefun("pipingFail",pipingRate);

iarc("pipingOp","piping");
oarc("pipingOp","piping");

place("failedPiping");

iarc("pipingFail","piping");
oarc("pipingFail","failedPiping");

imm("pipingDegradedOp"); probval("pipingDegradedOp", 0.33);
imm("pipingLOVOp"); probval("pipingLOVOp",0.67);

place("pipingDegraded");

iarc("pipingDegradedOp","failedPiping");
oarc("pipingDegradedOp","degraded_operation");
oarc("pipingDegradedOp","pipingDegraded");
oarc("pipingDegradedOp","piping");

iarc("pipingLOVOp","failedPiping");
oarc("pipingLOVOp","loss_of_vehicle");

/* Axle */

imm("axle_op"); probval("axle_op",1);

place("axleCentral");
place("FLWheel");
place("FRWheel");
place("RLWheel");
place("RRWheel");

iarc("axle_op","axle");
oarc("axle_op","axleCentral");
oarc("axle_op","FLWheel");
oarc("axle_op","FRWheel");
oarc("axle_op","RLWheel");
oarc("axle_op","RRWheel");

103

/* Axle Central */
imm("axle_central_op"); probval("axle_central_op",1);

place("hydraulicPump");
place("pressureTank");
place("limitingValve");
place("toggleSwitch");
place("speedSensor");
place("pressureSensor");

iarc("axle_central_op","axleCentral");
oarc("axle_central_op","hydraulicPump");
oarc("axle_central_op","pressureTank");
oarc("axle_central_op","limitingValve");
oarc("axle_central_op","toggleSwitch");
oarc("axle_central_op","speedSensor");
oarc("axle_central_op","pressureSensor");

/* Hydraulic Pump */

rateval("hydraulicPumpOp",1.0);
ratefun("hydraulicPumpFail",hydraulicPumpRate);

iarc("hydraulicPumpOp","hydraulicPump");
oarc("hydraulicPumpOp","hydraulicPump");

iarc("hydraulicPumpFail","hydraulicPump");
oarc("hydraulicPumpFail","loss_of_vehicle");

/* Pressure Tank */

rateval("pressureTankOp",1.0);
ratefun("pressureTankFail",pressureTankRate);

iarc("pressureTankOp","pressureTank");
oarc("pressureTankOp","pressureTank");

iarc("pressureTankFail","pressureTank");
oarc("pressureTankFail","loss_of_vehicle");

/* Limiting Valve */

rateval("limitingValveOp",1.0);
ratefun("limitingValveFail",limitingValveRate);

iarc("limitingValveOp","limitingValve");
oarc("limitingValveOp","limitingValve");

place("failedLimitingValve");

iarc("limitingValveFail","limitingValve");
oarc("limitingValveFail","failedLimitingValve");

imm("limitingValveLOSOp"); probval("limitingValveLOSOp",0.22);
imm("limitingValveLOVOp"); probval("limitingValveLOVOp",0.78);

place("limitingValveLOS");

iarc("limitingValveLOSOp","failedLimitingValve");
oarc("limitingValveLOSOp","loss_of_stability");
oarc("limitingValveLOSOp","limitingValveLOS");
oarc("limitingValveLOSOp","limitingValve");

104

iarc("limitingValveLOVOp","failedLimitingValve");
oarc("limitingValveLOVOp","loss_of_vehicle");

/* Toggle Switch */

rateval("toggleSwitchOp",1.0);
ratefun("toggleSwitchFail",toggleSwitchRate);

iarc("toggleSwitchOp","toggleSwitch");
oarc("toggleSwitchOp","toggleSwitch");

place("toggleSwitchDegraded");

iarc("toggleSwitchFail","toggleSwitch");
oarc("toggleSwitchFail","degraded_operation");
oarc("toggleSwitchFail","toggleSwitchDegraded");
oarc("toggleSwitchFail","toggleSwitch");

/* Speed Sensor */

rateval("speedSensorOp",1.0);
ratefun("speedSensorFail",speedSensorRate);

iarc("speedSensorOp","speedSensor");
oarc("speedSensorOp","speedSensor");

place("failedSpeedSensor");

iarc("speedSensorFail","speedSensor");
oarc("speedSensorFail","failedSpeedSensor");

imm("speedSensorDegradedOp");
probval("speedSensorDegradedOp",0.38);

imm("speedSensorLOSOp"); probval("speedSensorLOSOp",0.62);

place("speedSensorDegraded");
place("speedSensorLOS");

iarc("speedSensorDegradedOp","failedSpeedSensor");
oarc("speedSensorDegradedOp","degraded_operation");
oarc("speedSensorDegradedOp","speedSensorDegraded");
oarc("speedSensorDegradedOp","speedSensor");

iarc("speedSensorLOSOp","failedSpeedSensor");
oarc("speedSensorLOSOp","loss_of_stability");
oarc("speedSensorLOSOp","speedSensorLOS");
oarc("speedSensorLOSOp","speedSensor");

/* Pressure Sensor */

rateval("pressureSensorOp",1.0);
ratefun("pressureSensorFail",pressureSensorRate);

iarc("pressureSensorOp","pressureSensor");
oarc("pressureSensorOp","pressureSensor");

place("failedPressureSensor");

iarc("pressureSensorFail","pressureSensor");
oarc("pressureSensorFail","failedPressureSensor");

imm("pressureSensorDegradedOp");

105

probval("pressureSensorDegradedOp",0.64);

imm("pressureSensorLOSOp"); probval("pressureSensorLOSOp",0.36);

place("pressureSensorDegraded");
place("pressureSensorLOS");

iarc("pressureSensorDegradedOp","failedPressureSensor");
oarc("pressureSensorDegradedOp","degraded_operation");
oarc("pressureSensorDegradedOp","pressureSensorDegraded");
oarc("pressureSensorDegradedOp","pressureSensor");

iarc("pressureSensorLOSOp","failedPressureSensor");
oarc("pressureSensorLOSOp","loss_of_stability");
oarc("pressureSensorLOSOp","pressureSensorLOS");
oarc("pressureSensorLOSOp","pressureSensor");

/* Rear Left Wheel */
imm("rear_left_wheel_op"); probval("rear_left_wheel_op",1);

place("rlInletValve");
place("rlDrainValve");

iarc("rear_left_wheel_op","RLWheel");
oarc("rear_left_wheel_op","rlInletValve");
oarc("rear_left_wheel_op","rlDrainValve");

/* Rear Left Inlet Valve */
rateval("rlInletValveOp",1.0);
ratefun("rlInletValveFail",rlValveRate);

iarc("rlInletValveOp","rlInletValve");
oarc("rlInletValveOp","rlInletValve");

place("failedRLInletValve");

iarc("rlInletValveFail","rlInletValve");
oarc("rlInletValveFail","failedRLInletValve");

imm("rlInletValveLOSOp"); probval("rlInletValveLOSOp",0.18);
imm("rlInletValveLOVOp"); probval("rlInletValveLOVOp",0.82);

place("rlInletValveLOS");

iarc("rlInletValveLOSOp","failedRLInletValve");
oarc("rlInletValveLOSOp","loss_of_stability");
oarc("rlInletValveLOSOp","rlInletValveLOS");
oarc("rlInletValveLOSOp","rlInletValve");

iarc("rlInletValveLOVOp","failedRLInletValve");
oarc("rlInletValveLOVOp","loss_of_vehicle");

/* Rear Left Drain Valve */
rateval("rlDrainValveOp",1.0);
ratefun("rlDrainValveFail",rlValveRate);

iarc("rlDrainValveOp","rlDrainValve");
oarc("rlDrainValveOp","rlDrainValve");

place("failedRLDrainValve");

iarc("rlDrainValveFail","rlDrainValve");
oarc("rlDrainValveFail","failedRLDrainValve");

106

imm("rlDrainValveLOSOp"); probval("rlDrainValveLOSOp",0.19);
imm("rlDrainValveLOVOp"); probval("rlDrainValveLOVOp",0.81);

place("rlDrainValveLOS");

iarc("rlDrainValveLOSOp","failedRLDrainValve");
oarc("rlDrainValveLOSOp","loss_of_stability");
oarc("rlDrainValveLOSOp","rlDrainValveLOS");
oarc("rlDrainValveLOSOp","rlDrainValve");

iarc("rlDrainValveLOVOp","failedRLDrainValve");
oarc("rlDrainValveLOVOp","loss_of_vehicle");

/* Rear Right Wheel */
imm("rear_right_wheel_op"); probval("rear_right_wheel_op",1);

place("rrInletValve");
place("rrDrainValve");

iarc("rear_right_wheel_op","RRWheel");
oarc("rear_right_wheel_op","rrInletValve");
oarc("rear_right_wheel_op","rrDrainValve");

/* Rear Right Inlet Valve */
rateval("rrInletValveOp",1.0);
ratefun("rrInletValveFail", rrValveRate);

iarc("rrInletValveOp","rrInletValve");
oarc("rrInletValveOp","rrInletValve");

place("failedRRInletValve");

iarc("rrInletValveFail","rrInletValve");
oarc("rrInletValveFail","failedRRInletValve");

imm("rrInletValveLOSOp"); probval("rrInletValveLOSOp",0.18);
imm("rrInletValveLOVOp"); probval("rrInletValveLOVOp",0.82);

place("rrInletValveLOS");

iarc("rrInletValveLOSOp","failedRRInletValve");
oarc("rrInletValveLOSOp","loss_of_stability");
oarc("rrInletValveLOSOp","rrInletValveLOS");
oarc("rrInletValveLOSOp","rrInletValve");

iarc("rrInletValveLOVOp","failedRRInletValve");
oarc("rrInletValveLOVOp","loss_of_vehicle");

/* Rear Right Drain Valve */
rateval("rrDrainValveOp",1.0);
ratefun("rrDrainValveFail", rrValveRate);

iarc("rrDrainValveOp","rrDrainValve");
oarc("rrDrainValveOp","rrDrainValve");

place("failedRRDrainValve");

iarc("rrDrainValveFail","rrDrainValve");
oarc("rrDrainValveFail","failedRRDrainValve");

imm("rrDrainValveLOSOp"); probval("rrDrainValveLOSOp",0.19);
imm("rrDrainValveLOVOp"); probval("rrDrainValveLOVOp",0.81);

107

place("rrDrainValveLOS");

iarc("rrDrainValveLOSOp","failedRRDrainValve");
oarc("rrDrainValveLOSOp","loss_of_stability");
oarc("rrDrainValveLOSOp","rrDrainValveLOS");
oarc("rrDrainValveLOSOp","rrDrainValve");

iarc("rrDrainValveLOVOp","failedRRDrainValve");
oarc("rrDrainValveLOVOp","loss_of_vehicle");

/* Front Left Wheel */
imm("front_left_wheel_op"); probval("front_left_wheel_op",1);

place("flInletValve");
place("flDrainValve");

iarc("front_left_wheel_op","FLWheel");
oarc("front_left_wheel_op","flInletValve");
oarc("front_left_wheel_op","flDrainValve");

/* Front Left Inlet Valve */
rateval("flInletValveOp",1.0);
ratefun("flInletValveFail", flValveRate);

iarc("flInletValveOp","flInletValve");
oarc("flInletValveOp","flInletValve");

place("failedFLInletValve");

iarc("flInletValveFail","flInletValve");
oarc("flInletValveFail","failedFLInletValve");

imm("flInletValveLOSOp"); probval("flInletValveLOSOp",0.18);
imm("flInletValveLOVOp"); probval("flInletValveLOVOp",0.82);

place("flInletValveLOS");

iarc("flInletValveLOSOp","failedFLInletValve");
oarc("flInletValveLOSOp","loss_of_stability");
oarc("flInletValveLOSOp","flInletValveLOS");
oarc("flInletValveLOSOp","flInletValve");

iarc("flInletValveLOVOp","failedFLInletValve");
oarc("flInletValveLOVOp","loss_of_vehicle");

/* Front Left Drain Valve */
rateval("flDrainValveOp",1.0);
ratefun("flDrainValveFail",flValveRate);

iarc("flDrainValveOp","flDrainValve");
oarc("flDrainValveOp","flDrainValve");

place("failedFLDrainValve");

iarc("flDrainValveFail","flDrainValve");
oarc("flDrainValveFail","failedFLDrainValve");

imm("flDrainValveLOSOp"); probval("flDrainValveLOSOp",0.19);
imm("flDrainValveLOVOp"); probval("flDrainValveLOVOp",0.81);

place("flDrainValveLOS");

108

iarc("flDrainValveLOSOp","failedFLDrainValve");
oarc("flDrainValveLOSOp","loss_of_stability");
oarc("flDrainValveLOSOp","flDrainValveLOS");
oarc("flDrainValveLOSOp","flDrainValve");

iarc("flDrainValveLOVOp","failedFLDrainValve");
oarc("flDrainValveLOVOp","loss_of_vehicle");

/* Front Right Wheel */
imm("front_right_wheel_op"); probval("front_right_wheel_op",1);

place("frInletValve");
place("frDrainValve");

iarc("front_right_wheel_op","FRWheel");
oarc("front_right_wheel_op","frInletValve");
oarc("front_right_wheel_op","frDrainValve");

/* Front Right Inlet Valve */
rateval("frInletValveOp",1.0);
ratefun("frInletValveFail",frValveRate);

iarc("frInletValveOp","frInletValve");
oarc("frInletValveOp","frInletValve");

place("failedFRInletValve");

iarc("frInletValveFail","frInletValve");
oarc("frInletValveFail","failedFRInletValve");

imm("frInletValveLOSOp"); probval("frInletValveLOSOp",0.18);
imm("frInletValveLOVOp"); probval("frInletValveLOVOp",0.82);

place("frInletValveLOS");

iarc("frInletValveLOSOp","failedFRInletValve");
oarc("frInletValveLOSOp","loss_of_stability");
oarc("frInletValveLOSOp","frInletValveLOS");
oarc("frInletValveLOSOp","frInletValve");

iarc("frInletValveLOVOp","failedFRInletValve");
oarc("frInletValveLOVOp","loss_of_vehicle");

/* Front Right Drain Valve */
rateval("frDrainValveOp",1.0);
ratefun("frDrainValveFail", frValveRate);

iarc("frDrainValveOp","frDrainValve");
oarc("frDrainValveOp","frDrainValve");

place("failedFRDrainValve");

iarc("frDrainValveFail","frDrainValve");
oarc("frDrainValveFail","failedFRDrainValve");

imm("frDrainValveLOSOp"); probval("frDrainValveLOSOp",0.19);
imm("frDrainValveLOVOp"); probval("frDrainValveLOVOp",0.81);

place("frDrainValveLOS");

iarc("frDrainValveLOSOp","failedFRDrainValve");
oarc("frDrainValveLOSOp","loss_of_stability");

109

oarc("frDrainValveLOSOp","frDrainValveLOS");
oarc("frDrainValveLOSOp","frDrainValve");

iarc("frDrainValveLOVOp","failedFRDrainValve");
oarc("frDrainValveLOVOp","loss_of_vehicle");

halting_condition(halt);
}

int assert()
{

return(RES_NOERR);
}

void ac_init()
{

fprintf(stderr,"\nAnti-Lock Braking/Anti-Skid Controller");
fprintf(stderr,"\nGenerating SRN data ...\n\n");
pr_net_info();

}

void ac_reach()
{

fprintf(stderr,"\nThe reachability graph is being generated");
fprintf(stderr," for the Anti-Lock Braking System...\n\n");
pr_rg_info();

}

double reliab()
{

double reward;
if((mark("loss_of_vehicle") >= 1) || (mark("loss_of_stability") >=

3) || (mark("degraded_operation") >= 5))
reward = 0;

else
reward = 1;

return reward;
}

void calc_reliab(int start,int stop,int interval)
{

int i;

for(i = start; i <= stop; i+= interval)
{

solve((double)i);
pr_expected("reliability",reliab);

}
}

ac_final()
{
calc_reliab(0,1000,50); /* 20 intervals */
calc_reliab(1000,10000,200); /* 45 intervals*/
calc_reliab(10000,25000,300); /* 50 intervals*/
calc_reliab(25000,50000,500); /* 50 intervals */
pr_mtta("mean time to failure");

}

110

Figure A.1 SPN Model representing Severity of Failure and Coincident Failures

A.1.2 The SPN Model

The actual Stochastic Petri Net Model is depicted in Figure A.1. A composite form of

this global SPN model that showed only the key structure was presented in Figure 11, and

the sub-model for the controller component was depicted in Figure 12. The figure here

shows the details of all components glued together and present in the global model.

discrete places: 61
immediate transitions: 36
timed transitions: 37
constant input arcs: 73
constant output arcs: 126
tangible markings: 164209 (91880 absorbing)

APPENDIX B

STOCHASTIC ACTIVITY NETWORK MODELS FOR ABS

112

B.1 Modeling Severity and Coincident Failures

This section presents the SAN models for representing severity of failure and

coincident failures. See Section 4.2 for explanation. The SAN models representing usage-

profiles are not very different these and are not presented here.

The composed SAN model for the ABS was depicted in Figure 20 and the Central_2

subnet was presented in context of modeling severity and coincident failures in Figure 21.

All three subnets are presented here, with the definitions of all the input and output gates

and the failure activities. The Wheel subnet is depicted in Figure B.1.

wheel wheel_op

drainValve

inletValve

halted

inletValveLOS_out

LOS

LOV
inletValveFail

drainValveFail

DVFailInhibit

IVFailInhibit

haltInhibit
drainValveLOS

inletValveLOS

halt_test

drainValveLOS_out

wheel_out
halt

Input Gate

haltInhibit

DVFailInhibit

Enabling Predicate Function

MARK(halted) == 0

MARK(halted) == 0

1.0

1.0

Activity

drainValveFail

inletValveFail

Rate
Probability

MARK(drainValveLOS) !=0 ||
MARK(inletValveLOS) !=0
?drainValveRate*10000

:drainValveRate

Case1 Case2

0.18 0.82

0.22 0.78

IVFailInhibit MARK(halted) == 0 1.0

halt_test
MARK(LOS) >=3 ||
MARK(LOV) >=1

MARK(LOS) = 3;
MARK(LOV) = 1;

Output Gate

wheel_out

drainValveLOS_out

Output Function

MARK(drainValve) = 1;
MARK(inletValve) = 1;

MARK(drainValve) = 1;
MARK(drainValveLOS) = 1;
if(MARK(LOS)>2)

MARK(LOS) = 3;
else

MARK(LOS) += 1;

inletValveLOS_out

MARK(inletValve) = 1;
MARK(inletValveLOS) = 1;
if(MARK(LOS)>2)

MARK(LOS) = 3;
else

MARK(LOS) += 1;MARK(drainValveLOS) !=0 ||
MARK(inletValveLOS) !=0

?inletValveRate*10000
:inletValveRate

Figure B.1 The Wheel Subnet representing Severity of Failure and Coincident Failures

113

The Central_2 subnet is depicted in Figure B.2a.

central_2 central2_op

central2_out

hydraulicPump

pressureTank

controller

tubing

hydraulicPumpFail

pressureTankFail

controllerFail

tubingFail

toggleSwitchDegraded_out

controllerLOS_out

tubingDegraded_out

toggleSwitchDegraded

controllerLOS

tubingDegraded

LOV

LOS

degraded

halt_test
halttoggleSwitch toggleSwitchFail

controllerDegraded_out

controllerDegraded

halted

HPFailInhibit

PTFailInhibit

TSFailInhibit

haltInhibit

CFailInhibit

TFailInhibit

Figure B.2a The Central_2 Subnet representing Severity of Failure and Coincident Failures

114

The input gates, output gates and activity rates for the Central_2 subnet are

represented in Figure B.2b. Note the constructs specifying the activity rates for modeling

severity and coincident failures as discussed in Section 4.2.1.2.

Input Gate

haltInhibit

HPFailInhibit

Enabling Predicate Function

MARK(halted) == 0

MARK(halted) == 0

1.0

1.0

Activity

hydraulicPum
pFail

pressureTank
Fail

Rate
Probability

MARK(controllerLOS) !=0?
hydraulicPumpRate*10000:
(MARK(controllerDegraded)

!=0
?hydraulicPumpRate*100

:hydraulicPumpRate)

Case1 Case2

1.0 -

1.0 -

PTFailInhibit MARK(halted) == 0 1.0

halt_test
MARK(degraded)>=5
|| MARK(LOS) >=3 ||

MARK(LOV) >=1

MARK(degraded)=5;
MARK(LOS) = 3;
MARK(LOV) = 1;

Output Gate

central2__out

toggleSwitchDegraded
_out

Output Function

MARK(hydraulicPump)=1;
MARK(pressureTank)=1;
MARK(toggleSwitch)=1;
MARK(controller)=1;
MARK(tubing)=1;

MARK(toggleSwitch) = 1;
MARK(toggleSwitchDegraded) = 1;
if(MARK(degraded)>4)

MARK(degraded) = 5;
else

MARK(degraded) += 1;

controllerLOS_out

MARK(controller) = 1;
MARK(controllerLOS) = 1;
if(MARK(LOS)>2)

MARK(LOS) = 3;
else

MARK(LOS) += 1;

MARK(controllerLOS) !=0?
pressureTankRate*10000:

(MARK(controllerDegraded)
!=0

?pressureTankRate*100
:pressureTankRate)

TSInhibit

CFailInhibit

MARK(halted) == 0

MARK(halted) == 0

1.0

1.0

TFailInhibit MARK(halted) == 0 1.0

controllerDegraded_o
ut

MARK(controller) = 1;
MARK(controllerDegraded) = 1;
if(MARK(degraded)>4)

MARK(degraded) = 5;
else

MARK(degraded) += 1;

tubingDegraded_out

MARK(tubing) = 1;
MARK(tubingDegraded) = 1;
if(MARK(degraded)>4)

MARK(degraded) = 5;
else

MARK(degraded) += 1;

Case3

-

-

toggleSwitchF
ail

controllerFail

MARK(tubingDegraded) !=0?
toggleSwitchRate*100

:toggleSwitchRate)
- -

0.4 0.4

MARK(controllerLOS) !=0?
pressureTankRate*10000:

(MARK(controllerDegraded)
!=0 ||

MARK(tubingDegraded) !=0
?pressureTankRate*100

:pressureTankRate)

1.0

0.2

tubingFail
MARK(tubingDegraded) !=0?

tubingRate*100
:tubingRate)

0.67 - 0.33

Figure B.2b The Central_2 Subnet definitions for Activity Rates and Gates

115

The Central_1 subnet is depicted in Figure B.3a.

central_1 central1_op

central1_out

mainBrakeCylinder

pressureSensor

piping

limitingValve

mainBrakeCylinderFail

pressureSensorFail

pipingFail

limitingValveFail

speedSensorDegraded_out

limitingValveLOS_out

speedSensorDegraded

limitingValveLOS

LOV

LOS

degraded

halt_test
halt

speedSensor
speedSensorFail

pipingDegraded_out

pipingDegraded

halted

MBCFailInhibit

PSFailInhibit

SSFailInhibit

haltInhibit

PFailInhibit

LVFailInhibit

pressureSensorLOS_out

pressureSensorLOS

pressureSensorDegraded_out

pressureSensorDegraded

speedSensorLOS

speedSensorLOS_out

Figure B.3a The Central_1 Subnet representing Severity of Failure and Coincident Failures

116

The input gates, output gates and activity rates for the Central_1 subnet are

represented in Figure B.3b.

Input Gate

haltInhibit

MBCFailInhibit

Enabling Predicate Function

MARK(halted) == 0

MARK(halted) == 0

1.0

1.0

Activity

mainBrakeCylind
erFail

PressureSensor
Fail

Rate
Probability

mainBrakeCylinderRate

Case1 Case2

1.0 -

- 0.36

PSFailInhibit MARK(halted) == 0 1.0

halt_test
MARK(degraded)>=5
|| MARK(LOS) >=3 ||

MARK(LOV) >=1

MARK(degraded)=5;
MARK(LOS) = 3;
MARK(LOV) = 1;

Output Gate

central1__out

pressureSensorDegra
ded_out

Output Function

MARK(mainBrakeCylinder)=1;
MARK(pressureSensor)=1;
MARK(speedSensor)=1;
MARK(piping)=1;
MARK(limitingValve)=1;

MARK(pressureSensor) = 1;
MARK(pressureSensorDegraded) = 1;
if(MARK(degraded)>4)

MARK(degraded) = 5;
else

MARK(degraded) += 1;

pressureSensorLOS_
out

MARK(pressureSensor) = 1;
MARK(pressureSensorLOS) = 1;
if(MARK(LOS)>2)

MARK(LOS) = 3;
else

MARK(LOS) += 1;

MARK(pressureSensorLOS)
!=0?

pressureSensorRate*10000:
(MARK(pressureSensorDegr

aded) !=0
?pressureSensorRate*100

:pressureSensorRate)

SSInhibit

PFailInhibit

MARK(halted) == 0

MARK(halted) == 0

1.0

1.0

LVFailInhibit MARK(halted) == 0 1.0

pipingDegraded_out

MARK(piping) = 1;
MARK(pipingDegraded) = 1;
if(MARK(degraded)>4)

MARK(degraded) = 5;
else

MARK(degraded) += 1;

limitingValveLOS_out

MARK(limitingValve) = 1;
MARK(limitingValveLOS) = 1;
if(MARK(LOS)>2)

MARK(LOS) = 3;
else

MARK(LOS) += 1;

Case3

-

0.64

speedSensorFail

pipingFail

MARK(pressureSensorLOS)
!=0?

pressureSensorRate*10000:
(MARK(pressureSensorDegr

aded) !=0
?pressureSensorRate*100

:pressureSensorRate)

- 0.62

0.67 -
(MARK(pipingDegraded) !=0

?pipingRate*100
:pipingRate)

0.38

0.33

limitingValveFail
MARK(limitingValveLOS)

!=0?limitingValveRate*10000
:limitingValveRate)

0.78 0.22 -

speedSensorDegrade
d_out

MARK(speedSensor) = 1;
MARK(speedSensorDegraded) = 1;
if(MARK(degraded)>4)

MARK(degraded) = 5;
else

MARK(degraded) += 1;

speedSensorLOS_out

MARK(speedSensor) = 1;
MARK(speedSensorLOS) = 1;
if(MARK(LOS)>2)

MARK(LOS) = 3;
else

MARK(LOS) += 1;

Figure B.3b The Central_1 Subnet definitions for Activity Rates and Gates

APPENDIX C

KEY TO SYMBOLS USED IN SPN AND SAN

118

C.1 Symbols used in Stochastic Petri Nets

The symbols used to describe the various components in a Stochastic Petri Net are

listed in Figure C.1.

C.2 Symbols used in Stochastic Activity Networks

The symbols used to describe the various components in a Stochastic Activity

Networks are listed in Figure C.2.

PLACE

IMMEDIATE
TRANSITION

INPUT ARC

OUTPUT ARC

TIMED
TRANSITION

TOKEN

INHIBITOR ARC

WEIGHTED ARC n

Figure C.1 Key to Symbols used in SPNs

PLACE

INSTANTANEOUS
ACTIVITY

INPUT ARC

OUTPUT ARC

TIMED ACTIVITY

INPUT GATE

OUTPUT GATE

CASES

TOKEN

Figure C.2. Key to Symbols used in SANs

APPENDIX D

RISK AND SAFETY INTEGRITY LEVELS

120

The International Electrotechnical Commission (CEI/IEC) sets out a generic approach

for all safety lifecycle activities for systems comprised of electrical and/or electronic

and/or programmable electronic components (electrical/electronic/programmable

electronic systems (E/E/PESs)) that are used to perform safety functions. This appendix

provides information on risk and safety integrity from IEC Standard 61508 [60]. The

framework provided by this thesis can provide the basis of quantitative risk analysis

(including the determining the SIL of hazards, safety requirements elicitation/generation,

risk mitigation and root cause analysis).

D.1 Risk and Safety Integrity

Risk is a measure of the probability and consequence of a specified hazardous event12

occurring. This can be evaluated for different situations (EUC risk, risk required to meet

the tolerable risk, actual risk). The purpose of determining the tolerable risk for a specific

hazardous event is to state what is deemed reasonable with respect to both the frequency

(or probability) of the hazardous event and its specific consequences. Safety integrity

applies solely to E/E/PE safety-related systems, other technology safety related systems

and external risk reduction facilities and is a measure of the likelihood of those

systems/facilities satisfactorily achieving the necessary risk reduction in respect of the

specified safety functions. Safety integrity is considered to be composed of two elements:

hardware safety integrity and software safety integrity.

12 A circumstance in which a person is exposed to potential source of harm and which results in physical
injury or damage to the health of people either directly or indirectly as a result of damage to property or the
environment.

121

Table D.1: Example of risk classification of accidents

Frequency Consequence
Catastrophic Critical Marginal Negligible

Frequent I I I II
Probable I I II III
Occasional I II III III
Remote II III III IV
Improbable III III IV IV
Incredible IV IV IV IV

Table D.1 is an example showing four risk classes (I, II, III and IV) for a number of

consequences and frequencies. Table D.2 interprets each of the risk classes using the

concept of ALARP (as low as reasonable practicable).

Table D.2: Interpretation of risk classes

Risk class Interpretation
Class I Intolerable risk
Class II Undesirable risk, and tolerable only if risk reduction is impracticable

or if the costs are grossly disproportionate to the improvement gained
Class III Tolerable risk if the cost of risk reduction would exceed the

improvement gained
Class IV Negligible risk

D.2 Safety Integrity Levels

To cater for the wide range of necessary risk reductions that the safety-related

systems have to achieve, it is useful to have available a number of safety integrity levels

as a means of satisfying the safety integrity requirements of the safety functions allocated

to the safety-related system. In the IEC 61508 standard, four safety integrity levels are

specified, with safety integrity level 4 being the highest level and safety integrity 1 being

the lowest. The safety integrity level target failure measures for the four safety integrity

levels are specified in Tables D.3 and D.4 for safety-related systems operating in a low

demand mode of operation and in a high demand mode of operation respectively.

122

Table D.3: Safety integration levels: target failure measures for a safety function
operating in a low demand mode of operation

Safety integrity level Low demand mode of operation
(Average probability of failure to perform its

design function on demand)
4 ≥ 10-5 to < 10-4

3 ≥ 10-4 to < 10-3

2 ≥ 10-3 to < 10-2

1 ≥ 10-2 to < 10-1

TableD.4: Safety integrity levels: target failure measures for a safety function
operating in high demand or continuous mode of operation

Safety integrity level High demand mode of operation
(Probability of a dangerous failure per hour)

4 ≥ 10-9 to < 10-8

3 ≥ 10-8 to < 10-7

2 ≥ 10-7 to < 10-6

1 ≥ 10-6 to < 10-5

The safety integrity levels can be determined from the information present in Tables

D.1 and D.2 using either quantitative methods or qualitative methods (e.g. risk graph and

hazardous event severity matrix).

